CP0603A1441ENTR [KYOCERA AVX]

Directional Coupler, 1429MHz Min, 1453MHz Max, 0.25dB Insertion Loss-Max, ROHS COMPLIANT, MINIATURE, LGA-4;
CP0603A1441ENTR
型号: CP0603A1441ENTR
厂家: KYOCERA AVX    KYOCERA AVX
描述:

Directional Coupler, 1429MHz Min, 1453MHz Max, 0.25dB Insertion Loss-Max, ROHS COMPLIANT, MINIATURE, LGA-4

射频 微波
文件: 总113页 (文件大小:1309K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
A KYOCERA GROUP COMPANY  
AVX  
RF Microwave/Thin-Film  
Products  
AVX Microwave  
Ask The World Of Us  
As one of the world’s broadest line  
multilayer ceramic chip capacitor  
suppliers, and a major Thin Film  
RF/Microwave capacitor, inductor,  
directional coupler and low pass filter and  
microwave ceramic capacitor manufacturer,  
it is our mission to provide First In Class  
Technology, Quality and Service, by  
establishing progressive design,  
manufacturing and continuous  
improvement programs driving  
toward a single goal:  
TOTAL CUSTOMER SATISFACTION  
1
RF/Microwave Products  
Table of Contents  
Company Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Thin-Film RF/Microwave Technology – Accu-F® / Accu-P® . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-24  
Thin-Film Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Thin-Film Chip Capacitors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Thin-Film Chip Capacitors for RF Signal and Power Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Accu-F®. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Accu-P® . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
0201 Typical Electrical Tables – Accu-P® . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
0402 Typical Electrical Tables – Accu-P® . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-13  
0603 Typical Electrical Tables – Accu-F® / Accu-P® . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
0805 Typical Electrical Tables – Accu-F® / Accu-P® . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
1210 Typical Electrical Tables – Accu-P® . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
High Frequency Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-19  
Environmental / Mechanical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Performance Characteristics RF Power Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Application Notes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-23  
Automatic Insertion Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Thin-Film RF/Microwave Inductor Technology – Accu-L® – L0603/L0805 . . . . . . . . . . . . . . . . . . 25-30  
SMD High-Q RF Inductor – Accu-L® . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26-29  
Environmental Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Application Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Thin-Film RF/Microwave Directional Couplers – CP0402/CP0603/CP0805/DB0805 3dB 90° . . . . 31-67  
CP0402 High Directivity LGA Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32-35  
CP0603 High Directivity LGA Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36-40  
CP0402 and CP0603 Test Jigs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
CP0603 SMD Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42-44  
CP0603 SMD Type – High Directivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
CP0805 Type. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46-49  
CP0805 and CP0603 Test Jigs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
DB0805 3dB 90° Couplers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51-62  
DB0805 3dB 90° Test Jigs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Thin-Film RF/Microwave Harmonic Low Pass Filter – LP0603/LP0805 . . . . . . . . . . . . . . . . . . . . 64-71  
LP0603 Test Jigs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67-68  
LP0805 Test Jigs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Thin-Film RF/Microwave Products – Designer Kits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72-74  
RF/Microwave Multilayer Capacitors (MLC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75-89  
Porcelain Capacitors (+90 20ppm/°C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76-79  
• AQ06 (0.063" x 0.032") - Cap. Range: 0.1 to 120pF  
• AQ11; AQ12 (0.055" x 0.055") - Cap. Range: 0.1 to 100pF  
• AQ13; AQ14 (0.110" x 0.110") - Cap. Range: 0.1 to 1000pF  
Hi-Q NP0 Capacitors (0 30ppm/°C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
• AQ06 (0.063" x 0.032") - Cap. Range: 0.1 to 120pF  
• AQ11; AQ12 (0.055" x 0.055") - Cap. Range: 0.1 to 1000pF  
• AQ13; AQ14 (0.110" x 0.110") - Cap. Range: 0.1 to 5100pF  
Hi-K RF Capacitors ( 15ꢀ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78-79  
• AQ12 (0.055" x 0.055") - Cap. Range: 0.001 to 0.010µF  
• AQ14 (0.110" x 0.110") - Cap. Range: 0.005 to 0.1µF  
MIL-PRF-55681 “BG” Voltage Temperature Limits (+90 20ppm/°C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80-82  
• CDR11BG; CDR12BG (0.055" x 0.055") - Failure Rate Level: M, P, R, S  
• CDR13BG; CDR14BG (0.110" x 0.110") - Failure Rate Level: M, P, R, S  
MIL-PRF-55681 “BP” Voltage Temperature Limits (0 30ppm/°C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80-82  
• CDR11BP; CDR12BP (0.055" x 0.055") - Failure Rate Level: M, P, R, S  
• CDR13BP; CDR14BP (0.110" x 0.110") - Failure Rate Level: M, P, R, S  
Performance Curves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83-87  
Automatic Insertion Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Hi-Q® High RF Power MLC Surface Mount Capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
RF/Microwave C0G (NP0) Capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90-93  
Ultra Low ESR “U” Series, C0G (NP0)  
• 0402 (0.040" x 0.020"), 0603 (0.060" x 0.030"), 0805 (0.080" x 0.050"), 1210 (0.125" x 0.100") . . . . . . . . . . . . . . . . . . 91-93  
RF/Microwave AQ 12 & 14 and “U” Series Designer Kits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94-97  
Introduction to Microwave Capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98-110  
2
RF/Microwave Products  
Table of Contents  
Company Profile. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Thin-Film RF/Microwave Technology – Accu-F® / Accu-P® . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-24  
Thin-Film RF/Microwave Technology – Accu-L® L0603, L0805. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25-30  
Thin-Film RF/Microwave Directional Couplers – CP0402/CP0603/CP0805/DB0805 3dB 90° . . . . 31-63  
Thin-Film RF/Microwave Harmonic Low Pass Filter – LP0603/LP0805 . . . . . . . . . . . . . . . . . . . . . . . . . 64-71  
Thin-Film RF/Microwave Products – Designer Kits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72-74  
RF/Microwave Multilayer Capacitors (MLC). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75-89  
RF/Microwave C0G (NP0) Capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90-93  
RF/Microwave AQ 12 & 14 and “U” Series Designer Kits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94-97  
1
2
3
4
5
6
7
8
9
Introduction to Microwave Capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98-110  
3
RF/Microwave Products  
Company Profile  
AVX Corporation is a leading manufacturer of multilayer ceramic,  
thin film, tantalum, and glass capacitors, as well as other passive  
electronic components. These products are used in virtually every  
variety of electronic system today, including data processing,  
telecommunications, consumer/automotive electronics, military and  
aerospace systems, and instrumentation and process controls.  
We continually strive to be the leader in all component segments we  
supply. RF/Microwave capacitors is a thrust business for us. AVX  
offers a broad line of RF/Microwave Chip Capacitors in a wide range  
of sizes, styles, and ratings.  
The Thin-Film Products range illustrated in this catalog represents  
the state-of-the-art in RF Capacitors, Inductors, Directional  
Couplers and Low Pass Filters. The thin-film technology provides  
components that exhibit excellent batch-to-batch repeatability of  
electrical parameters at RF frequencies.  
The Accu-F® and Accu-P® series of capacitors are available in ultra-  
tight tolerances (±±.±2pFꢀ as well as non-standard capacitance  
values.  
The Accu-L® series of inductors are ideally suited for applications  
requiring an extremely high Q and high current capability.  
The CP±4±2/CP±6±3/CP±8±5 series of Directional Couplers cover  
the frequency range of 8±± MHz to 6 GHz. They feature low inser-  
tion loss, high directivity and highly accurate coupling factors.  
The LP±8±5 series of Low Pass Filters provide a rugged component  
in a small ±8±5 size package with excellent high frequency perfor-  
mance.  
Another major series of microwave capacitors consists of both  
multilayer porcelain and ceramic capacitors for frequencies from  
1± MHz to 4.2 GHz (AQ11 - 14 Seriesꢀ. Three sizes of specially  
designed ultra-low ESR C±G (NP±ꢀ capacitors are covered for  
RF applications (“U” Seriesꢀ.  
Ask the world of us. Call (843) 448-9411.  
Or visit our website http://www.avx.com  
4
 
1
Thin-Film Technology  
®
®
Accu-F / Accu-P  
Thin-Film RF/Microwave Capacitors  
5
 
®
®
Accu-F / Accu-P  
Thin-Film Technology  
This accuracy sets apart these Thin-Film capacitors from  
ceramic capacitors so that the term Accu has been  
employed as the designation for this series of devices, an  
abbreviation for “accurate.”  
THE IDEAL CAPACITOR  
The non-ideal characteristics of a real capacitor can be  
ignored at low frequencies. Physical size imparts inductance  
to the capacitor and dielectric and metal electrodes result in  
resistive losses, but these often are of negligible effect on the  
circuit. At the very high frequencies of radio communication  
(>100MHz) and satellite systems (>1GHz), these effects  
become important. Recognizing that a real capacitor will  
exhibit inductive and resistive impedances in addition to  
capacitance, the ideal capacitor for these high frequencies is  
an ultra low loss component which can be fully characterized  
in all parameters with total repeatability from unit to unit.  
THIN-FILM TECHNOLOGY  
Thin-film technology is commonly used in producing semi-  
conductor devices. In the last two decades, this technology  
has developed tremendously, both in performance and in  
process control. Todays techniques enable line definitions of  
below 1µm, and the controlling of thickness of layers at 100Å  
1
-2  
(10 µm). Applying this technology to the manufacture of  
Until recently, most high frequency/microwave capacitors  
were based on fired-ceramic (porcelain) technology. Layers  
of ceramic dielectric material and metal alloy electrode paste  
are interleaved and then sintered in a high temperature oven.  
This technology exhibits component variability in dielectric  
quality (losses, dielectric constant and insulation resistance),  
variability in electrode conductivity and variability in physical  
size (affecting inductance). An alternate thin-film technology  
has been developed which virtually eliminates these vari-  
ances. It is this technology which has been fully incorporated  
capacitors has enabled the development of components  
where both electrical and physical properties can be tightly  
controlled.  
The thin-film production facilities at AVX consist of:  
• Class 1000 clean rooms, with working areas under  
laminar-flow hoods of class 100, (below 100 particles  
per cubic foot larger than 0.5µm).  
• High vacuum metal deposition systems for high-purity  
electrode construction.  
®
®
into Accu-F and Accu-P to provide high frequency capaci-  
tors exhibiting truly ideal characteristics.  
• Photolithography equipment for line definition down to  
2.0µm accuracy.  
®
®
The main features of Accu-F and Accu-P may be summa-  
rized as follows:  
• Plasma-enhanced CVD for various dielectric deposi-  
tions (CVD=Chemical Vapor Deposition).  
• High purity of electrodes for very low and repeatable  
ESR.  
• High accuracy, microprocessor-controlled dicing saws  
for chip separation.  
• Highly pure, low-K dielectric for high breakdown field,  
high insulation resistance and low losses to frequencies  
above 40GHz.  
• High speed, high accuracy sorting to ensure strict  
tolerance adherence.  
• Very tight dimensional control for uniform inductance,  
unit to unit.  
• Very tight capacitance tolerances for high frequency  
signal applications.  
TERMINATION  
ALUMINA  
SEAL  
ELECTRODE  
ELECTRODE  
DIELECTRIC  
ALUMINA  
ACCU-P® CAPACITOR  
6
 
®
®
Accu-F / Accu-P  
Thin-Film Chip Capacitors  
ACCU-F® TECHNOLOGY  
ACCU-P® TECHNOLOGY  
As in the Accu-F series the use of very low-loss dielectric  
®
The use of very low-loss dielectric materials, silicon dioxide  
and silicon oxynitride, in conjunction with highly conductive  
electrode metals results in low ESR and high Q. These  
high-frequency characteristics change at a slower rate with  
increasing frequency than for ceramic microwave capacitors.  
materials (silicon dioxide and silicon oxynitride) in conjunction  
with highly conductive electrode metals results in low ESR and  
high Q. At high frequency these characteristics change at  
a slower rate with increasing frequency than conventional  
ceramic microwave capacitors. Using thin-film technology, the  
above-mentioned frequency characteristics are obtained with-  
out significant compromise of properties required for surface  
mounting. The use of high thermal conductivity materials  
results in excellent RF power handling capabilities.  
Because of the thin-film technology, the above-mentioned  
frequency characteristics are obtained without significant  
compromise of properties required for surface mounting.  
1
®
The main Accu-F properties are:  
• Internationally agreed sizes with excellent dimensional  
control.  
• Small size chip capacitors (0603) are available.  
• Tight capacitance tolerances.  
• Low ESR at VHF, UHF and microwave frequencies.  
• High stability with respect to time, temperature, frequency  
and voltage variation.  
®
The main Accu-P properties are:  
• Enhanced RF power handling capability.  
• Improved mechanical characteristics.  
• Internationally agreed sizes with excellent dimensional control.  
• Ultra Small size chip capacitors (0201) are available.  
• Tight capacitance tolerances.  
• Low ESR at UHF, VHF, and microwave frequencies.  
• High-stability with respect to time, temperature, frequency  
and voltage variation.  
• Nickel/solder-coated terminations to provide excellent  
solderability and leach resistance.  
ACCU-F® FEATURES  
Accu-F meets the fast-growing demand for low-loss  
• High temperature nickel/solder-coated terminations as stan-  
dard to provide excellent solderability and leach resistance.  
®
(high-Q) capacitors for use in surface mount technology espe-  
cially for the mobile communications market, such as cellular  
radio of 450 and 900 MHz, UHF walkie-talkies, UHF cordless  
telephones to 2.3 GHz, low noise blocks at 11-12.5 GHz and  
for other VHF, UHF and microwave applications.  
ACCU-P® FEATURES  
• Minimal batch to batch variability of parameters at high fre-  
quency.  
®
®
• The Accu-P has the same unique features as the Accu-F  
®
Accu-F is currently unique in its ability to offer very  
capacitor such as low ESR, high Q, availability of very low  
capacitance values and very tight capacitance tolerances.  
low capacitance values (0.1pF) and very tight capacitance  
®
tolerances ( 0.05pF). Typically Accu-F will be used in small  
®
• The RF power handling capability of the Accu-P allows for  
its usage in both small signal and RF power applications.  
signal applications in VCOs, matching networks, filters, etc.  
Inspection test and quality control procedures in accordance  
with ISO 9001, CECC, IECQ and USA MIL Standards yield  
products of the highest quality.  
• Inspection, test and quality control procedures in accor-  
dance with ISO 9001, CECC, IECQ and USA MIL Standards  
guarantee product of the highest quality.  
®
• Hand soldering Accu-P : Due to their construction  
APPLICATIONS  
utilizing relatively high thermal conductivity materials,  
Accu-Ps have become the preferred device in R & D labs  
and production environments where hand soldering is used.  
Accu-Ps are available in all sizes and are electrically identi-  
cal to their Accu-F counterparts.  
Cellular Communications  
Radar Systems  
Video Switching  
Test & Measurements  
Filters  
VCOs  
Matching Networks  
CT2/PCN (Cordless  
Telephone/Personal Comm.  
Networks)  
Satellite TV  
Cable TV  
GPS (Global Positioning Systems)  
Vehicle Location Systems  
Vehicle Alarm Systems  
Paging  
APPLICATIONS  
Cellular Communications  
CT2/PCN (Cordless  
Telephone/Personal Comm.  
Networks)  
Satellite TV  
Cable TV  
GPS (Global Positioning Systems)  
Vehicle Location Systems  
Vehicle Alarm Systems  
Paging  
Radar Systems  
Video Switching  
Test & Measurements  
Filters  
APPROVALS  
ISO 9001  
Military Communications  
VCO's  
Matching Networks  
RF Amplifiers  
APPROVALS  
ISO 9001  
Military Communications  
7
®
®
Accu-F */ Accu-P  
Thin-Film Chip Capacitors for  
RF Signal and Power Applications  
B1  
T
B2  
ACCU-P® (Signal and Power Type Capacitors)  
L
1
0201  
0402*  
0603*  
0805*  
1210  
3.±2±±.1  
ACCU-F® *(Signal Type Capacitors)  
±.6±±±.±5  
1.±±±±.1  
1.6±±±.1  
2.±1±±.1  
L
W
T
0603  
1.6±±±.1  
(±.±63±±.±±4ꢀ  
0805  
2.±1±±.1  
(±.±79±±.±±4ꢀ  
(±.±23±±.±±2ꢀ (±.±39±±.±±4ꢀ (±.±63±±.±±4ꢀ (±.±79±±.±±4ꢀ (±.119±±.±±4ꢀ  
±.325±±.±5± ±.55±±.±7 ±.81±±.1 1.27±±.1 2.5±±.1  
(±.±128±±.±±2ꢀ (±.±22±±.±±3ꢀ (±.±32±±.±±4ꢀ (±.±5±±±.±±4ꢀ (±.1±±±±.±±4ꢀ  
±.225±±.±5± ±.4±±±.1 ±.63±±.1 ±.93±±.2 ±.93±±.2  
(±.±±9±±.±±2ꢀ (±.±16±±.±±4ꢀ (±.±25±±.±±4ꢀ (±.±36±±.±±8ꢀ (±.±36±±.±±8ꢀ  
±.1±±±.1± ±.±±±±.1/-± ±.35±±.15 ±.3±±±.1 ±.43±±.1  
(±.±±4±±.±±4ꢀ (±.±±±±±.±±4/-±ꢀ (±.±14±±.±±6ꢀ (±.±12±±.±±4ꢀ (±.±17±±.±±4ꢀ  
±.15±±.±5 ±.2±±±.1 ±.35±±.15 ±.3±±±.1 ±.43±±.1  
(±.±±6±±.±±2ꢀ (±.±±8±±.±±4ꢀ (±.±14±±.±±6ꢀ (±.±12±±.±±4ꢀ (±.±17±±.±±4ꢀ  
L
W
T
±.81±±.1  
(±.±32±±.±±4ꢀ  
1.27±±.1  
(±.±5±±±.±±4ꢀ  
±.63±±.1  
(±.±25±±.±±4ꢀ  
±.63±±.1  
(±.±25±±.±±4ꢀ  
B1  
B2  
±.3±±±.1  
(±.±12±±.±±4ꢀ  
±.3±±±.1  
(±.±12±±.±±4ꢀ  
B
Not recommended for new designs.  
Accu-P’s are recommended.  
DIMENSIONS:  
millimeters (inches)  
Mount Black Side Up  
DIMENSIONS: millimeters (inches)  
*
*
HOW TO ORDER  
0805  
5
J
120  
G
A
W
TR  
Size  
0201*  
0402*  
0603  
0805  
Voltage Temperature Capacitance  
1 = 100V Coefficient (1)  
Tolerance  
for  
Termination  
Code  
Packaging  
Code  
TR = Tape and Reel  
Specification  
Code  
Capacitance  
J = 0 30ppm/°C expressed in pF.  
®
5 = 50V  
3 = 25V  
Y = 16V  
Z = 10V  
C2.0pF*  
W = Nickel/  
A = Accu-F  
(-55°C to  
+125°C)  
K = 0 60ppm/°C  
(-55°C to  
(2 significant  
digits + number Q = 0.03pF  
of zeros)  
for values  
<10pF,  
P = 0.02pF  
Solder Coated  
technology  
®
®
Accu-F Sn63, Pb37  
B = Accu-P  
®
1210*  
* Accu-P ONLY  
A = 0.05pF  
B = 0.1pF  
C = 0.25pF  
technology  
Accu-P 0201 & 0402  
Sn90, Pb10  
+125°C)  
T = Nickel/High Temperature  
letter R denotes  
decimal point.  
Example:  
68pF = 680  
8.2pF = 8R2  
for  
C3.0pF  
Q = 0.03pF  
A = 0.05pF  
B = 0.1pF  
C = 0.25pF  
Solder Coated  
®
Accu-P 0603, 0805, 1210  
Sn96, Ag4  
S = Nickel/Lead Free  
Solder Coated  
®
Accu-P 0402  
(1) TCs shown are per EIA/IEC Specifications.  
for  
C5.6pF  
A = 0.05pF  
B = 0.1pF  
C = 0.25pF  
Sn100  
for  
5.6pF<C<10pF  
B = 0.1pF  
C = 0.25pF  
D = 0.5pF  
for  
C10pF  
F = 1ꢀ  
G = 2ꢀ  
J = 5ꢀ  
* Tolerances as tight as 0.01pF are available.  
Please consult the factory.  
ELECTRICAL SPECIFICATIONS  
Operating and Storage Temperature Range  
Temperature Coefficients(1)  
Capacitance Measurement  
Insulation Resistance (IR)  
Proof Voltage  
-55°C to +125°C  
0
30ppm/°C dielectric code “J” / 0 60ppm/°C dielectric code “K”  
1 MHz, 1 Vrms  
1011 Ohms (10 Ohms for 0201 and 0402 size)  
2.5 UR for 5 secs.  
Zero  
10  
Aging Characteristic  
Dielectric Absorption  
0.01ꢀ  
(1) TC’s shown are per EIA/IEC Specifications.  
8
®
Accu-F *  
Signal Type Capacitors  
Accu-F® Capacitance Ranges (pF)  
TEMP. COEFFICIENT CODE  
“J” = 0 30ppm/°C  
TEMP. COEFFICIENT CODE  
“K” = 0 60ppm/°C  
(-55°C to +125°C)(2)  
(-55°C to +125°)(2)  
1
Size  
Size Code  
Size  
Size Code  
0603  
50  
0805  
50  
0603  
50  
0805  
50  
Voltage  
100  
25  
100  
25  
Voltage  
100  
25  
100  
25  
Cap in  
pF(1)  
Cap  
Cap in  
Cap  
(
code  
pF(1)  
code  
±.1  
±.2  
±.3  
±.4  
±.5  
±.6  
±.7  
±.8  
±.9  
±R1  
±R2  
±R3  
±R4  
±R5  
±R6  
±R7  
±R8  
±R9  
±.1  
±.2  
±.3  
±.4  
±.5  
±.6  
±.7  
±.8  
±.9  
±R1  
±R2  
±R3  
±R4  
±R5  
±R6  
±R7  
±R8  
±R9  
1.±  
1.2  
1.5  
1R±  
1R2  
1R5  
1.±  
1.2  
1.5  
1R±  
1R2  
1R5  
1.8  
2.2  
2.7  
1R8  
2R2  
2R7  
1.8  
2.2  
2.7  
1R8  
2R2  
2R7  
3.3  
3.9  
4.7  
3R3  
3R9  
4R7  
3.3  
3.9  
4.7  
3R3  
3R9  
4R7  
5.6  
6.8  
8.2  
5R6  
6R8  
8R2  
5.6  
6.8  
8.2  
5R6  
6R8  
8R2  
1±  
12  
15  
1±±  
12±  
15±  
1±  
12  
15  
1±±  
12±  
15±  
18  
22  
27  
18±  
22±  
27±  
18  
22  
27  
18±  
22±  
27±  
33  
39  
47  
33±  
39±  
47±  
33  
39  
47  
33±  
39±  
47±  
56  
68  
82  
56±  
68±  
82±  
56  
68  
82  
56±  
68±  
82±  
1±±  
12±  
15±  
1±1  
121  
151  
1±±  
12±  
15±  
1±1  
121  
151  
(1ꢀ  
(1ꢀ  
For capacitance values higher than listed in table,  
please consult factory.  
For capacitance values higher than listed in table,  
please consult factory.  
(2ꢀ  
TC shown is per EIA/IEC Specifications.  
(2ꢀ TC shown is per EIA/IEC Specifications.  
Intermediate values are available within the indicated range.  
Not recommended for new designs.  
Accu-P’s are recommended.  
*
9
®
Accu-P  
Signal and Power Type Capacitors  
Accu-P® Capacitance Ranges (pF)  
TEMP. COEFFICIENT CODE  
TEMP. COEFFICIENT CODE  
“K” = 0 60ppm/°C (-55°C to +125°C)  
Size  
(2)  
(2)  
“J” = 0 30ppm/°C (-55°C to +125°C)  
Size  
Size Code  
Voltage  
0805  
50  
1210  
100  
Size Code  
Voltage  
0201  
0402  
0603  
0805  
1210  
100  
25  
50(3)  
25 16 10 25 16 10 50 25 100 50 25 100 50  
Cap in  
Cap  
Cap in  
Cap  
pF(1)  
code  
pF(1)  
code  
1
±.1  
±.2  
±.3  
±.4  
±.5  
±.6  
±.7  
±.8  
±.9  
±R1  
±R2  
±R3  
±R4  
±R5  
±R6  
±R7  
±R8  
±R9  
±.1  
±.2  
±.3  
±.4  
±.5  
±.6  
±.7  
±.8  
±.9  
±R1  
±R2  
±R3  
±R4  
±R5  
±R6  
±R7  
±R8  
±R9  
1.±  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
1.9  
1R±  
1R1  
1R2  
1R3  
1R4  
1R5  
1R6  
1R7  
1R8  
1R9  
1.±  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
1.9  
1R±  
1R1  
1R2  
1R3  
1R4  
1R5  
1R6  
1R7  
1R8  
1R9  
2.±  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
2R±  
2R1  
2R2  
2R3  
2R4  
2R5  
2R6  
2R7  
2R8  
2R9  
2.±  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
2R±  
2R1  
2R2  
2R3  
2R4  
2R5  
2R6  
2R7  
2R8  
2R9  
3.±  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
3.8  
3.9  
3R±  
3R1  
3R2  
3R3  
3R4  
3R5  
3R6  
3R7  
3R8  
3R9  
3.±  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
3.8  
3.9  
3R±  
3R1  
3R2  
3R3  
3R4  
3R5  
3R6  
3R7  
3R8  
3R9  
4.±  
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
4.7  
4R±  
4R1  
4R2  
4R3  
4R4  
4R5  
4R6  
4R7  
4.±  
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
4.7  
4R±  
4R1  
4R2  
4R3  
4R4  
4R5  
4R6  
4R7  
5.1  
5.6  
6.2  
5R1  
5R6  
6R2  
5.1  
5.6  
6.2  
5R1  
5R6  
6R2  
6.8  
7.5  
8.2  
6R8  
7R5  
8R2  
6.8  
7.5  
8.2  
6R8  
7R5  
8R2  
9.1  
1±.±  
11.±  
9R1  
1±±  
11±  
9.1  
1±.±  
11.±  
9R1  
1±±  
11±  
12.±  
13.±  
14.±  
12±  
13±  
14±  
12.±  
13.±  
14.±  
12±  
13±  
14±  
15.±  
16.±  
17.±  
15±  
16±  
17±  
15.±  
16.±  
17.±  
15±  
16±  
17±  
18.±  
22.±  
24.±  
18±  
22±  
24±  
18.±  
22.±  
24.±  
18±  
22±  
24±  
27.±  
3±.±  
33.±  
27±  
3±±  
33±  
27.±  
3±.±  
33.±  
27±  
3±±  
33±  
39.±  
47.±  
56.±  
68.±  
39±  
47±  
56±  
68±  
39.±  
47.±  
56.±  
68.±  
39±  
47±  
56±  
68±  
(1ꢀ For capacitance values higher than listed in table,  
please consult factory.  
(1ꢀ For capacitance values higher than listed in table,  
please consult factory.  
(2ꢀ TC shown is per EIA/IEC Specifications.  
(3ꢀ For 5± volt range, please consult factory.  
(2ꢀ TC shown is per EIA/IEC Specifications.  
These values are produced with “K” temperature coefficient  
code only.  
Intermediate values are available within the indicated range.  
1±  
®
Accu-P  
0201 Typical Electrical Tables  
Self  
250MHz  
500MHz  
750MHz  
1000MHz  
1250MHz  
Capacitance Resonance  
@ 1 MHz  
(pF)  
Frequency  
(GHz)  
Typical  
Typ.  
C(eff)  
(pF)  
Typ.  
Q
Typ.  
ESR  
()  
Typ.  
C(eff)  
(pF)  
Typ.  
Q
Typ.  
ESR  
()  
Typ.  
C(eff)  
(pF)  
Typ.  
Q
Typ.  
ESR  
()  
Typ.  
C(eff)  
(pF)  
Typ.  
Q
Typ.  
ESR  
()  
Typ.  
C(eff)  
(pF)  
Typ.  
Q
Typ.  
ESR  
()  
0.8  
1.2  
1.8  
2.2  
3.3  
3.9  
4.7  
5.6  
6.8  
9.1  
7.6  
6.3  
5.7  
4.6  
4.3  
3.9  
3.6  
3.3  
0.84  
1.21  
1.84  
2.23  
3.29  
3.91  
4.71  
5.62  
6.77  
2154  
1375  
1298  
1355  
1295  
1902  
1677  
1391  
1135  
360  
405  
271  
214  
156  
93  
0.84  
1.21  
1.85  
2.24  
3.31  
3.93  
4.74  
5.67  
6.83  
630  
525  
520  
512  
430  
460  
391  
370  
314  
603  
517  
341  
281  
230  
181  
174  
154  
149  
0.85  
1.22  
1.86  
2.25  
3.33  
3.97  
4.80  
5.74  
6.91  
424  
341  
337  
335  
285  
298  
252  
257  
217  
594  
527  
347  
284  
230  
185  
178  
148  
142  
0.85  
1.23  
1.87  
2.27  
3.36  
4.02  
4.87  
5.83  
7.03  
327  
267  
270  
264  
220  
227  
181  
195  
164  
577  
503  
326  
270  
223  
181  
183  
144  
139  
0.86  
1.23  
1.88  
2.29  
3.40  
4.08  
4.97  
5.95  
7.18  
255  
208  
201  
199  
159  
163  
130  
140  
118  
588  
515  
347  
284  
242  
198  
200  
157  
151  
1
84  
84  
84  
Self  
1500MHz  
1750MHz  
2250MHz  
2500MHz  
2750MHz  
Capacitance Resonance  
@ 1 MHz  
(pF)  
Frequency  
(GHz)  
Typical  
Typ.  
C(eff)  
(pF)  
Typ.  
Q
Typ.  
ESR  
()  
Typ.  
C(eff)  
(pF)  
Typ.  
Q
Typ.  
ESR  
()  
Typ.  
C(eff)  
(pF)  
Typ.  
Q
Typ.  
ESR  
()  
Typ.  
C(eff)  
(pF)  
Typ.  
Q
M
Typ.  
ESR  
()  
Typ.  
C(eff)  
(pF)  
Typ.  
Q
Typ.  
ESR  
()  
0.8  
1.2  
1.8  
2.2  
3.3  
3.9  
4.7  
5.6  
6.8  
9.1  
7.6  
6.3  
5.7  
4.6  
4.3  
3.9  
3.6  
3.3  
0.86  
1.24  
1.90  
2.32  
3.45  
4.16  
5.08  
6.11  
7.38  
204  
155  
148  
145  
119  
122  
99  
611  
565  
388  
320  
266  
216  
213  
166  
155  
0.87  
1.26  
1.92  
2.34  
3.50  
4.25  
5.23  
6.31  
7.63  
168  
129  
123  
123  
101  
103  
83  
631  
577  
395  
322  
263  
214  
212  
164  
158  
0.88  
1.28  
1.96  
2.41  
3.63  
4.46  
5.55  
6.76  
8.22  
141  
92  
96  
93  
74  
75  
60  
64  
54  
587  
570  
395  
329  
277  
224  
221  
174  
166  
0.89  
1.30  
1.99  
2.46  
3.73  
4.63  
5.83  
7.16  
8.74  
126  
89  
83  
81  
64  
64  
50  
53  
44  
571  
566  
396  
328  
276  
223  
222  
175  
169  
0.90  
1.31  
2.02  
2.50  
3.84  
4.79  
6.10  
7.56  
9.29  
122  
81  
74  
72  
55  
56  
43  
45  
37  
532  
558  
397  
330  
281  
225  
224  
141  
173  
108  
93  
91  
76  
11  
®
Accu-P  
0402 Typical Electrical Tables  
Capacitance  
Self  
& Tolerance* Resonance Ref  
Typ.  
Typ.  
Q
Typ.  
Ref  
Typ.  
Typ.  
Q
Typ. Ref Typ.  
Typ.  
Q
Typ.  
Ref Typ. Typ.  
Typ.  
Ref  
Typ.  
Typ.  
Q
Typ.  
@ 1 MHz  
(pF)  
Frequency  
(GHz)  
Typical  
Freq C(eff)  
(MHz) (pF)  
ESR Freq C(eff)  
() (MHz) (pF)  
ESR Freq C(eff)  
() (MHz) (pF)  
ESR Freq C(eff)  
() (MHz) (pF)  
Q
ESR  
()  
Freq C(eff)  
(MHz) (pF)  
ESR  
()  
0.1 0.05  
0.2 0.05  
0.3 0.05  
0.4 0.05  
0.5 0.05  
0.6 0.05  
0.7 0.05  
0.8 0.05  
0.9 0.05  
1.00 0.05  
1.10 0.05  
1.20 0.05  
1.30 0.05  
1.40 0.05  
1.50 0.05  
1.60 0.05  
1.70 0.05  
1.80 0.05  
1.90 0.05  
2.00 0.05  
2.10 0.05  
2.20 0.05  
2.30 0.05  
2.40 0.05  
2.50 0.05  
2.60 0.05  
2.70 0.05  
2.80 0.05  
2.90 0.05  
3.00 0.05  
3.10 0.05  
3.20 0.05  
3.30 0.05  
3.40 0.05  
3.50 0.05  
3.60 0.05  
3.70 0.05  
3.80 0.05  
3.90 0.05  
4.00 0.05  
4.10 0.05  
4.20 0.05  
4.30 0.05  
4.40 0.05  
4.50 0.05  
4.60 0.05  
4.70 0.05  
5.10 0.05  
5.60 0.05  
6.2 0.1  
19.4  
16.4  
14.6  
12.5  
11.3  
10.4  
9.5  
9.1  
8.8  
8
7.8  
7.4  
7
6.8  
6.5  
6.5  
6.4  
6.2  
6
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
1.15 1283  
1.22 1219  
1.33 1153  
1.42 1109  
1.54 1061  
1.63 1002  
1.76  
1.81  
1.86  
1.93  
2.06  
2.14  
2.27  
2.36  
2.48  
2.6  
2.71  
2.83  
2.94  
3.11  
3.39  
3.45  
3.61  
3.72  
3.78  
3.82  
3.87  
3.93  
4
4.01  
4.07  
4.18  
4.27  
4.34  
4.45  
4.52  
4.62  
4.74  
5.16  
5.75  
6.09  
6.94  
7.51  
8.36  
9.28  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
1.13  
1.21  
1.31  
1.4  
1.52  
1.58  
1.69  
1.75  
1.83  
1.91  
2.11  
2.21  
2.26  
2.4  
2.51  
2.62  
2.73  
2.82  
2.9  
2.99  
3.11  
3.22  
3.3  
3.42  
3.53  
3.6  
3.7  
3.81  
3.9  
4.02  
4.11  
4.2  
4.29  
4.43  
4.5  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
1.12 620  
1.19 561  
1.3  
1.35 480  
1.49 461  
1.6  
1.71 429  
1.75 422  
1.8  
1.91 401  
2.01 400  
2.1  
2.27 396  
2.3 379  
2.41 358  
2.52 349  
2.65 331  
2.86 313  
2.91 308  
3.15 303  
3.41 299  
3.48 291  
3.68 285  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
1
n/a  
n/a  
247  
246  
245  
244  
243  
242  
242  
241  
240  
239  
239  
238  
237  
237  
236  
235  
234  
233  
233  
232  
231  
230  
230  
229  
228  
227  
226  
226  
225  
224  
224  
223  
223  
222  
222  
221  
221  
220  
217  
214  
211  
208  
205  
202  
199  
196  
193  
189  
186  
184  
182  
179  
178  
1.16 1635 0.34  
1.25 1581 0.32  
1.34 1538 0.30  
1.42 1502 0.29  
1.53 1476 0.28  
1.63 1454 0.28  
1.71 1448 0.27  
1.85 1444 0.27  
1.93 1430 0.26  
2.01 1421 0.25  
2.11 1410 0.24  
2.21 1406 0.23  
2.28 1406 0.22  
2.32 1405 0.20  
2.45 1404 0.19  
2.49 1404 0.18  
494  
492  
491  
490  
488  
486  
485  
483  
482  
481  
480  
478  
476  
475  
473  
472  
470  
469  
468  
467  
466  
465  
464  
462  
461  
460  
459  
458  
458  
457  
457  
456  
455  
454  
453  
452  
451  
450  
447  
443  
440  
436  
433  
430  
428  
0.22 742  
0.21 740  
0.21 738  
0.21 736  
0.20 733  
0.20 731  
0.20 729  
0.19 728  
0.19 727  
0.19 726  
0.18 722  
0.17 720  
0.16 718  
0.16 716  
0.16 715  
0.16 714  
0.15 712  
0.15 711  
0.15 710  
0.15 710  
0.15 709  
0.15 708  
0.15 707  
0.14 707  
0.14 706  
0.14 705  
0.14 704  
0.14 702  
0.13 699  
0.13 697  
0.13 696  
0.13 696  
0.12 695  
0.12 694  
0.12 693  
0.12 692  
0.11 691  
0.11 690  
0.11 687  
0.11 684  
0.10 681  
0.09 678  
0.09 675  
0.08 673  
0.09 670  
870  
791  
727  
701  
680  
638  
622  
612  
597  
583  
582  
581  
581  
549  
501  
486  
477  
464  
458  
450  
440  
429  
421  
415  
407  
402  
395  
389  
386  
384  
381  
380  
379  
373  
369  
364  
359  
351  
348  
342  
339  
334  
320  
306  
249  
0.22  
0.22  
0.22  
0.21  
0.21  
0.21  
0.21  
0.20  
0.20  
0.20  
0.19  
0.18  
0.17  
0.17  
0.17  
0.17  
0.17  
0.17  
0.16  
0.16  
0.16  
0.16  
0.16  
0.16  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.14  
0.14  
0.14  
0.14  
0.14  
0.13  
0.13  
0.13  
0.13  
0.12  
0.11  
0.10  
0.10  
0.09  
0.10  
0.11  
0.11  
0.11  
0.09  
0.12  
0.10  
0.11  
0.11  
0.10  
0.11  
0.11  
0.12  
991  
989  
986  
983  
980  
978  
986  
985  
983  
972  
969  
966  
964  
962  
960  
959  
958  
956  
954  
953  
952  
951  
950  
949  
948  
947  
946  
945  
944  
943  
942  
941  
940  
939  
939  
938  
938  
937  
934  
932  
928  
926  
924  
922  
920  
0.23 1240 1.14  
0.24 1238 1.21  
0.25 1234 1.33  
0.24 1230 1.41  
0.23 1229 1.53  
0.23 1226 1.65  
0.23 1224 1.77  
0.22 1223 1.86  
0.22 1220 1.91  
0.21 1219 1.97  
0.20 1215 2.11  
0.19 1213 2.22  
0.18 1212 2.35  
0.18 1209  
0.19 1208 2.53  
0.19 1205 2.7  
0.19 1204 2.85  
0.19 1203  
0.18 1202 3.12  
0.18 1201 3.24  
0.18 1201 3.33  
0.18 1199 3.45  
0.17 1198 3.58  
0.17 1197 3.61  
0.17 1196 3.78  
0.16 1195 3.91  
474  
425  
372  
350  
333  
316  
309  
305  
299  
294  
293  
291  
289  
262  
253  
240  
231  
224  
220  
218  
212  
207  
203  
198  
195  
191  
186  
181  
177  
172  
170  
169  
167  
168  
162  
161  
161  
159  
131  
129  
128  
127  
120  
0.25  
0.25  
0.25  
0.25  
0.25  
0.25  
0.24  
0.23  
0.23  
0.22  
0.21  
0.20  
0.19  
0.20  
0.20  
0.20  
0.20  
0.20  
0.20  
0.19  
0.19  
0.19  
0.19  
0.19  
0.19  
0.18  
0.18  
0.18  
0.18  
0.18  
0.18  
0.17  
0.17  
0.17  
0.16  
0.16  
0.16  
0.16  
0.16  
0.16  
0.15  
0.14  
0.13  
0.13  
0.13  
0.12  
0.12  
0.12  
0.12  
0.15  
0.13  
0.14  
0.14  
0.14  
0.14  
0.14  
0.14  
503  
438  
986  
970  
931  
897  
896  
893  
893  
870  
845  
821  
799  
778  
769  
751  
746  
733  
725  
711  
705  
693  
688  
667  
658  
649  
650  
655  
658  
657  
660  
665  
670  
673  
589  
576  
585  
591  
567  
542  
458  
413  
5.7  
5.4  
5.1  
5
398  
2.4  
4.9  
4.7  
4.6  
4.5  
4.5  
4.4  
4.4  
4.4  
4.3  
4.3  
4.3  
4.2  
4.2  
4.1  
4
3.9  
3.9  
3.8  
3.8  
3.7  
3.7  
3.6  
3.6  
3.5  
3.4  
3.3  
3
2.8  
2.7  
2.6  
2.5  
2.4  
2.3  
2.2  
2.2  
2.1  
2.1  
2
1.9  
1.8  
1.8  
1.8  
1.75  
2.6  
1402 0.16  
2.84 1399 0.15  
2.85 1395 0.15  
2.87 1395 0.15  
2.88 1392 0.14  
3
2.9  
1392 0.14  
2.91 1391 0.14  
2.92 1391 0.14  
2.93 1390 0.14  
2.95 1389 0.13  
2.97 1382 0.13  
2.99 1381 0.13  
3.8  
282  
3.79 276  
3.85 273  
3.89 270  
3.95 262  
4.02 256  
4.11 251  
4.18 250  
4.23 248  
4.37 247  
4.58 246  
4.62 246  
0.16 1194  
0.16 1193  
4
4.1  
4
1380 0.13  
0.16 1192 4.23  
0.16 1191 4.37  
0.16 1190 4.46  
0.15 1190 4.52  
0.15 1199 4.66  
0.15 1195 4.75  
0.14 1192 4.82  
0.14 1190 4.96  
0.14 1188 5.07  
0.14 1186 5.18  
0.14 1184 5.82  
0.14 1182 6.62  
0.12 1180 7.34  
0.11 1177 8.22  
0.10 1176 9.01  
4.01 1379 0.13  
4.09 1372 0.12  
4.18 1370 0.12  
4.27 1356 0.12  
4.36 1355 0.12  
4.44 1351 0.11  
4.53 1350 0.11  
4.62 1347 0.11  
4.75 1343 0.11  
5.19 1310 0.11  
5.74 1297 0.11  
6.31 1244 0.10  
6.92 1202 0.09  
7.57 1155 0.08  
8.35 1116 0.08  
9.23 1059 0.09  
4.6  
4.7  
245  
4.72  
4.74  
5.23  
5.81  
6.33  
7.04  
7.85  
8.48  
9.87  
4.79 244  
4.86 244  
5.53 230  
6.01 201  
6.68 202  
7.39 203  
8.17 191  
8.93 186  
10.2 152  
6.8 0.1  
7.5 0.1  
8.2 0.1  
9.1 0.1  
0.10 1174 10.04 118  
0.11 1172 11.98  
0.13 1171 13.75  
0.12 1170 15.3  
0.13 1168 17.63  
0.11 1164 23.9  
0.14 1167 23.1  
0.16 1166 23.6  
0.13 1161 34.7  
0.12 1163 34.9  
0.11 1164 35.2  
0.11 1163 37.5  
0.12 1162 39.1  
0.13 1161 100.5  
88  
70  
61  
52  
47  
40  
44  
28  
28  
29  
24  
19  
15  
10.0 1ꢀ  
11.0 1ꢀ  
12.0 1ꢀ  
13.0 1ꢀ  
14.0 1ꢀ  
15.0 1ꢀ  
16.0 1ꢀ  
17.0 1ꢀ  
18.0 1ꢀ  
19.0 1ꢀ  
20.0 1ꢀ  
22.0 1ꢀ  
10.14 936  
11.19 912  
12.16 889  
13.3  
14.26 802  
15.34 791  
0.09  
0.08  
0.08  
0.07  
0.08  
0.07  
0.07  
0.07  
0.07  
0.08  
0.08  
424 10.24 385  
421 11.17 363  
418  
416 13.32 363  
414 14.44 298  
413 15.46 283  
410  
410  
409 18.42 258  
407 19.4 241  
405 20.43 195  
404 23.105 174  
0.10 668 10.55 202  
0.09 666 11.81 185  
0.09 664 12.77 173  
0.08 661  
0.09 660 15.03 149  
0.08 660 16.16 138  
0.08 657  
0.08 657  
0.07 657 19.51 130  
0.07 655 20.51 115  
0.06 655  
0.54 654  
919 11.49 118  
917 12.87 103  
915 14.16 95  
12.3  
348  
984  
14.1  
183  
912  
15.8 101  
913 16.72 76.7  
912 18.51 82  
16.3  
17.6  
780  
765  
16.4  
17.7  
270  
263  
17.6  
18.2  
129  
130  
909  
909  
910  
908  
908  
20.2  
21.3  
22.7 75.5  
24.5  
26.5  
68  
70  
176.5 18.13 754  
175  
173  
19.2  
20.32 520  
680  
62  
57  
22.1  
25  
112  
85.5  
170.04 22.42 497.5 0.09  
907 30.95 44  
* Other tolerances are available, see page 8  
12  
®
Accu-P  
0402 Typical Electrical Tables  
Capacitance  
Self  
& Tolerance* Resonance Ref  
Typ.  
Typ.  
Q
Typ.  
Ref  
Typ. Typ.  
Typ.  
Ref Typ.  
Typ.  
Q
Typ.  
Ref  
Typ. Typ. Typ.  
Ref  
Typ.  
Typ.  
Q
Typ.  
@ 1 MHz  
(pF)  
Frequency  
(GHz)  
Typical  
Freq C(eff)  
(MHz) (pF)  
ESR Freq C(eff)  
() (MHz) (pF)  
Q
ESR Freq C(eff)  
() (MHz) (pF)  
ESR Freq C(eff)  
() (MHz) (pF)  
Q
ESR  
Freq C(eff)  
(MHz) (pF)  
ESR  
()  
()  
0.1 0.05  
0.2 0.05  
0.3 0.05  
0.4 0.05  
0.5 0.05  
0.6 0.05  
0.7 0.05  
0.8 0.05  
0.9 0.05  
1.00 0.05  
1.10 0.05  
1.20 0.05  
1.30 0.05  
1.40 0.05  
1.50 0.05  
1.60 0.05  
1.70 0.05  
1.80 0.05  
1.90 0.05  
2.00 0.05  
2.10 0.05  
2.20 0.05  
2.30 0.05  
2.40 0.05  
2.50 0.05  
2.60 0.05  
2.70 0.05  
2.80 0.05  
2.90 0.05  
3.00 0.05  
3.10 0.05  
3.20 0.05  
3.30 0.05  
3.40 0.05  
3.50 0.05  
3.60 0.05  
3.70 0.05  
3.80 0.05  
3.90 0.05  
4.00 0.05  
4.10 0.05  
4.20 0.05  
4.30 0.05  
4.40 0.05  
4.50 0.05  
4.60 0.05  
4.70 0.05  
5.10 0.05  
5.60 0.05  
6.2 0.1  
19.4  
16.4  
14.6  
12.5  
11.3  
10.4  
9.5  
9.1  
8.8  
8
7.8  
7.4  
7
6.8  
6.5  
6.5  
6.4  
6.2  
6
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
380  
342  
307  
289  
265  
252  
246  
241  
240  
239  
233  
230  
228  
214  
196  
182  
173  
164  
159  
156  
150  
148  
145  
143  
138  
133  
130  
126  
125  
121  
121  
121  
120  
120  
119  
119  
118  
118  
105  
90  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
314  
275  
251  
240  
221  
203  
201  
199  
198  
197  
190  
185  
183  
168  
151  
144  
132  
122  
120  
117  
114  
109  
105  
101  
101  
95  
94  
92  
90  
89  
88  
87  
87  
85  
85  
81  
80  
80  
75  
61  
60  
58  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
265  
232  
208  
196  
179  
169  
168  
167  
166  
165  
160  
155  
149  
132  
120  
112  
97  
94  
88  
84  
81  
79  
77  
76  
75  
73  
71  
69  
67  
66  
66  
65  
65  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
200  
177  
149  
137  
125  
115  
119  
120  
122  
123  
118  
115  
108  
99  
91  
81  
72  
66  
65  
63  
61  
59  
58  
55  
52  
51  
51  
49  
48  
47  
48  
49  
49  
50  
52  
52  
54  
54  
39  
28  
33  
36  
33  
31  
15  
8
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
1
n/a  
n/a  
1489  
1485  
1483  
1479  
1477  
1474  
1472  
1470  
1469  
1468  
1466  
1463  
1461  
1460  
1459  
1458  
1455  
1453  
1451  
1450  
1449  
1448  
1447  
1446  
1446  
1445  
1445  
1444  
1443  
1442  
1441  
1440  
1440  
1439  
1439  
1438  
1438  
1437  
1435  
1434  
1432  
1430  
1.18  
1.29  
1.37  
1.45  
1.6  
1.72  
1.81  
1.92  
1.98  
2.06  
2.12  
2.31  
2.47  
2.51  
2.6  
2.77  
2.85  
3.18  
3.25  
3.33  
3.49  
3.61  
3.7  
3.79  
4.01  
4.11  
4.2  
4.28  
4.44  
4.72  
4.8  
4.92  
5.01  
5.17  
5.28  
5.41  
5.49  
5.6  
0.25 1739 1.25  
0.25 1735 1.33  
0.25 1732 1.45  
0.25 1729 1.58  
0.25 1726 1.71  
0.25 1724 1.82  
0.24 1722 1.91  
0.23 1719 1.99  
0.22 1718 2.06  
0.22 1717 2.19  
0.21 1716 2.22  
0.20 1714 2.43  
0.20 1711 2.65  
0.20 1709 2.81  
0.25 1988 1.32  
0.25 1986 1.41  
0.25 1982 1.54  
0.25 1980 1.66  
0.25 1977 1.78  
0.25 1974 1.94  
0.24 1971 2.01  
0.24 2240 1.38 229  
0.24 2238 1.49 201  
0.24 2234 1.59 173  
0.24 2230 1.73 166  
0.24 2229 1.88 154  
0.24 2227 2.01 143  
0.23 2493 1.41  
0.24 2490 1.55  
0.25 2488 1.62  
0.25 2485 1.76  
0.25 2483 1.89  
0.25 2481 2.03  
0.23  
0.25  
0.27  
0.27  
0.26  
0.27  
0.25  
0.24  
0.22  
0.21  
0.21  
0.20  
0.20  
0.22  
0.23  
0.23  
0.24  
0.25  
0.25  
0.25  
0.25  
0.25  
0.25  
0.25  
0.24  
0.24  
0.24  
0.24  
0.24  
0.24  
0.23  
0.23  
0.21  
0.20  
0.20  
0.19  
0.19  
0.19  
0.21  
0.23  
0.19  
0.14  
0.14  
0.14  
0.16  
0.18  
0.18  
0.19  
0.23 2226  
2.1  
142  
0.24 2479  
2.1  
0.23 1970  
2.1  
0.22 2225 2.23 141  
0.21 2223 2.34 141  
0.21 2222 2.41 140  
0.20 2220 2.62 138  
0.20 2219 2.76 132  
0.20 2217 2.91 126  
0.19 2216 3.15 121  
0.19 2215 3.42 109  
0.19 2214 3.58  
0.19 2212 3.73  
0.20 2211 3.89  
0.20 2210 3.97  
0.20 2210 4.12  
0.20 2209 4.26  
0.20 2209 4.45  
0.19 2208 4.62  
0.20 2207 4.81  
0.20 2206 4.93  
0.19 2206 5.21  
0.23 2478 2.23  
0.22 2477 2.35  
0.21 2476 2.42  
0.21 2475 2.65  
0.22 1969 2.24  
0.21 1968 2.33  
0.21 1968 2.51  
0.21 1966 2.62  
0.20 1964 2.83  
0.20 1963 2.98  
0.20 1962 3.16  
0.20 1960 3.32  
0.20 1957 3.51  
0.20 1956 3.75  
0.20 1956 3.93  
0.20 1956 4.02  
0.20 1955 4.21  
5.7  
5.4  
5.1  
5
0.2  
2474 2.81  
0.19 2473 2.91  
0.19 2471 3.16  
0.2  
4.9  
4.7  
4.6  
4.5  
4.5  
4.4  
4.4  
4.4  
4.3  
4.3  
4.3  
4.2  
4.2  
4.1  
4
3.9  
3.9  
3.8  
3.8  
3.7  
3.7  
3.6  
3.6  
3.5  
3.4  
3.3  
3
2.8  
2.7  
2.6  
2.5  
2.4  
2.3  
2.2  
2.2  
2.1  
2.1  
2
1.9  
1.8  
1.8  
1.8  
1.75  
0.20 1708  
3
2469 3.42  
0.20 1706 3.12  
0.20 1705 3.25  
0.20 1703 3.47  
0.20 1702 3.62  
0.19 1702 3.77  
0.19 1701 3.99  
0.19 1700 4.16  
0.19 1700 4.31  
0.19 1699 4.47  
0.19 1698 4.62  
0.19 1697 4.78  
0.19 1697 4.91  
0.19 1696 5.05  
0.19 1696 5.11  
0.19 1695 5.26  
0.18 1694 5.38  
92  
85  
78  
75  
73  
72  
70  
69  
68  
66  
65  
63  
62  
61  
60  
60  
60  
59  
58  
57  
56  
55  
56  
45  
0.21 2468 3.66  
0.22 2467 3.73  
0.24 2466 3.89  
0.24 2466 4.03  
0.24 2466 4.17  
0.24 2465 4.21  
0.24 2465 4.33  
0.23 2464 4.49  
0.23 2464 4.66  
0.22 2464 4.92  
0.23 2463 5.15  
0.22 2463 5.25  
0.22 2462 5.41  
0.22 2462 5.66  
0.22 2461 5.82  
0.21 2461 5.86  
0.21 2460  
0.21 2460 5.95  
0.2  
0.2  
0.19 2458 6.23  
0.18 2458 6.29  
0.18 2457 6.35  
0.20 1952  
4.4  
0.20 1952 4.62  
0.20 1951 4.76  
0.20 1950 4.92  
0.20 1950 5.18  
0.20 1949 5.34  
0.20 2205  
5.4  
0.19 1949  
5.5  
0.20 2205 5.62  
0.20 2204 5.78  
0.21 2204 5.94  
0.20 2203 6.03  
0.19 2203 6.11  
0.18 2203 6.24  
0.18 2202 6.35  
0.19 1948 5.61  
0.19 1948 5.77  
0.19 1947 5.81  
0.19 1947 5.93  
0.18 1946 6.05  
0.18 1946 6.11  
0.18 1945 6.23  
0.18 1945 6.45  
0.18 1944 6.66  
0.18 1944 6.72  
0.18 1943 7.97  
0.17 1942 10.03  
0.15 1941 11.52  
0.13 1940 13.36  
0.14 1939 15.06  
0.13 1938 16.85  
0.14 1937 28.35  
0.16 1936 40.16  
0.15 1935 66.25  
0.14 1934 92.97  
0.17 1934 125  
0.21 1934 180.3  
0.17 1933 244.5  
0.17 1932  
0.18 1693  
5.5  
5.9  
0.18 1692 5.63  
0.18 1692 5.78  
0.18 1691 5.91  
0.18 1691 6.04  
0.17 1691 6.11  
0.17 1690 6.23  
0.17 1689 7.48  
0.17 1687 8.75  
0.15 1686 10.21  
0.13 1684 11.43  
0.13 1683 12.25  
0.13 1682 14.43  
0.13 1681 19.07  
0.14 1680 26.51  
0.15 1679 32.66  
0.15 1678 43.51  
0.13 1671 63.2  
0.15 1677 122  
0.14 1676 154  
0.14 1670  
64  
64  
64  
63  
63  
60  
51  
48  
45  
40  
38  
25  
11  
8
5
3
2459 6.01  
2459 6.12  
0.18 2202  
6.4  
0.19 2201 6.52  
0.17 2201 6.67  
0.17 2200 6.71  
0.19 2200 8.11  
0.21 2199 10.42 37  
0.18 2198 11.88 36  
0.14 2196 13.72 37  
0.13 2195 15.24 35  
0.13 2195 16.65 32  
0.15 2194 31.08 15  
0.17 2194 45.46  
0.17 2192 81.07  
0.18 2192 123.19  
0.18 2191  
0.19 2191  
0.16 2191  
6.59  
7.43  
8.27  
9.41  
0.2  
2456  
8.1  
0.22 2456 10.07  
0.18 2455 11.02  
0.14 2454 12.85  
0.15 2454 13.66  
0.14 2453 15.32  
0.16 2452 29.91  
0.18 2452 39.54  
0.2  
0.2  
0.2  
0.18  
0.161  
0.16  
0.16  
0.16  
0.16  
0.16  
0.155  
91  
88  
85  
79  
60  
41  
36  
29  
18  
17  
20  
12  
11  
9
7
5
6.8 0.1  
7.5 0.1  
8.2 0.1  
9.1 0.1  
1429 10.05  
1428 11.64  
1427 13.39  
1425  
1424 20.09  
1423 24.14  
1417  
1422 39.55  
1421 38.93  
1416  
1415  
1411 83.13  
56  
52  
33  
21  
19  
13  
5
2
10.0 1ꢀ  
11.0 1ꢀ  
12.0 1ꢀ  
13.0 1ꢀ  
14.0 1ꢀ  
15.0 1ꢀ  
16.0 1ꢀ  
17.0 1ꢀ  
18.0 1ꢀ  
19.0 1ꢀ  
20.0 1ꢀ  
22.0 1ꢀ  
17.6  
8
5
3
2451 61.28  
2450 82.44  
6
4
48.3  
1
2
79.3  
77.6  
0.16 2191  
0.16 2191  
0.16 2182  
0.16 2181  
0.16 2180  
0.16 2178  
0.14 1670  
0.15 1675  
0.15 1673  
0.15 1673  
0.17 1932  
0.17 1932  
0.16 1932  
0.16 1930  
1415  
1415  
1415.3 78.8  
79.6  
78.5  
4
0.15 1670.5  
0.15 1927.5  
* Other tolerances are available, see page 8  
13  
®
®
Accu-F / Accu-P  
0603 Typical Electrical Tables  
Capacitance  
Self  
Ref  
Effective  
Capacitance  
Max/Min  
(pF)  
Max  
ESR  
()  
Ref  
Freq.  
MHz  
Effective  
Capacitance  
Max/Min  
(pF)  
Max  
ESR  
()  
Ref  
Freq.  
MHz  
Effective  
Capacitance  
Max/Min  
(pF)  
Max  
ESR  
()  
Ref  
Freq.  
MHz  
Effective  
Capacitance  
Max/Min  
(pF)  
Max  
ESR  
()  
& Tolerance* Resonance Freq.  
@ 1 MHz  
(pF)  
Frequency MHz  
(GHz)  
0.1 0.05  
0.2 0.05  
0.3 0.05  
0.4 0.05  
0.5 0.05  
0.6 0.10  
0.7 0.10  
0.8 0.10  
0.9 0.10  
1.0 0.10  
1.1 0.10  
1.2 0.10  
1.3 0.10  
1.4 0.10  
1.5 0.10  
1.6 0.10  
1.7 0.10  
1.8 0.10  
1.9 0.10  
2.0 0.10  
2.1 0.10  
2.2 0.10  
2.4 0.25  
2.7 0.25  
3.0 0.25  
3.3 0.25  
3.6 0.25  
3.9 0.25  
4.3 0.25  
4.7 0.25  
5.1 0.25  
5.6 0.25  
6.2 0.25  
6.8 0.25  
7.5 0.50  
8.2 0.50  
9.1 0.50  
10 5ꢀ  
18.0  
12.7  
10.4  
9.0  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
491  
490  
487  
486  
485  
484  
483  
482  
479  
478  
477  
475  
474  
471  
468  
465  
459  
456  
455  
451  
448  
445  
443  
439  
435  
432  
429  
425  
422  
420  
418  
416  
414  
412  
410  
408  
404  
403  
402  
401  
400  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
738  
736  
734  
732  
731  
729  
727  
725  
723  
721  
720  
718  
717  
713  
709  
706  
699  
697  
695  
692  
689  
686  
684  
680  
677  
675  
672  
670  
667  
665  
663  
661  
660  
659  
657  
656  
654  
653  
652  
651  
650  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
987  
985  
981  
974  
977  
976  
973  
971  
969  
967  
966  
964  
962  
958  
954  
951  
945  
942  
940  
937  
935  
931  
929  
927  
925  
925  
921  
919  
917  
916  
914  
913  
912  
911  
910  
908  
906  
905  
905  
904  
904  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
1
8.1  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
7.4  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
6.8  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
6.4  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
6.0  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
5.7  
5.4  
5.2  
5.0  
4.8  
4.7  
4.5  
4.4  
4.2  
4.1  
4.0  
3.9  
3.8  
3.7  
3.5  
3.3  
3.1  
3.0  
2.9  
2.7  
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
2.0  
1.9  
1.8  
1.7  
1.6  
1.6  
1.5  
1.5  
1.4  
1.3  
1.2  
1.2  
1.1  
1.0  
1.0  
245  
244  
243  
242  
241  
241  
240  
240  
239  
239  
238  
237  
236  
234  
232  
230  
226  
224  
223  
220  
218  
216  
214  
211  
208  
205  
202  
200  
195  
191  
189  
187  
185  
182  
179  
176  
170  
168  
165  
163  
160  
1.15/0.90  
1.25/1.00  
1.35/1.10  
1.45/1.15  
1.55/1.25  
1.65/1.35  
1.75/1.45  
1.85/1.55  
2.10/1.70  
2.15/1.78  
2.11/1.80  
2.25/1.95  
2.40/2.05  
2.70/2.15  
3.00/2.45  
3.40/2.75  
3.60/3.05  
3.90/3.30  
4.20/3.65  
4.60/4.00  
5.00/4.45  
5.40/4.85  
5.90/5.35  
6.50/5.95  
7.20/6.55  
8.10/7.00  
8.80/7.70  
9.80/8.60  
10.70/9.50  
11.60/10.90  
12.90/11.40  
13.10/12.90  
14.90/13.25  
15.90/14.25  
17.00/15.15  
19.50/17.00  
24.00/20.90  
26.00/22.80  
29.00/25.60  
32.00/28.50  
37.65/31.35  
.280  
.270  
.260  
.260  
.250  
.250  
.240  
.230  
.220  
.210  
.205  
.200  
.190  
.175  
.160  
.150  
.130  
.128  
.125  
.122  
.120  
.115  
.110  
.105  
.100  
.095  
.090  
.090  
.085  
.085  
.085  
.080  
.080  
.080  
.070  
.070  
.066  
.066  
.065  
.064  
.064  
1.10/0.90  
1.25/1.00  
1.35/1.05  
1.45/1.15  
1.55/1.25  
1.65/1.35  
1.75/1.45  
1.85/1.60  
2.10/1.70  
2.15/1.80  
2.11/1.80  
2.25/1.98  
2.45/2.05  
2.75/2.15  
3.10/2.45  
3.40/2.75  
3.70/3.05  
4.25/3.35  
4.35/3.70  
4.80/4.05  
5.20/4.45  
5.70/4.89  
6.10/5.35  
6.90/5.95  
7.25/6.55  
8.10/7.00  
8.80/7.70  
10.95/8.65  
11.60/9.50  
12.20/10.60  
13.40/11.50  
14.00/13.00  
16.90/14.00  
17.50/15.30  
18.00/15.90  
20.20/17.10  
25.00/20.90  
30.00/23.00  
36.00/27.00  
40.00/30.00  
45.00/33.00  
.220  
.210  
.200  
.200  
.190  
.180  
.180  
.170  
.160  
.160  
.155  
.150  
.145  
.140  
.125  
.120  
.120  
.119  
.115  
.117  
.110  
.105  
.100  
.099  
.099  
.099  
.098  
.098  
.097  
.095  
.095  
.095  
.090  
.090  
.085  
.085  
.080  
.080  
.080  
.080  
.080  
1.10/0.90  
1.11/1.00  
1.40/1.05  
1.45/1.15  
1.45/1.25  
1.65/1.35  
1.75/1.45  
1.85/1.60  
2.10/1.70  
2.15/1.80  
2.11/1.80  
2.35/1.98  
2.42/2.05  
2.80/2.15  
3.10/2.45  
3.40/2.75  
3.70/3.05  
3.90/3.35  
4.90/3.75  
5.10/4.05  
5.30/4.50  
6.00/4.90  
6.15/5.40  
7.10/6.00  
7.50/6.60  
8.20/7.00  
9.00/7.70  
12.00/9.00  
12.50/9.60  
13.20/10.50  
14.60/11.90  
16.00/13.50  
19.00/15.00  
21.00/16.50  
22.00/17.00  
23.70/19.00  
28.00/21.00  
N/A  
.220  
.210  
.210  
.200  
.200  
.190  
.190  
.180  
.170  
.167  
.165  
.162  
.160  
.150  
.145  
.140  
.130  
.125  
.120  
.115  
.115  
.115  
.110  
.110  
.110  
.110  
.110  
.110  
.110  
.110  
.110  
.110  
.110  
.100  
.100  
.100  
.10  
1.15/0.90  
1.25/1.00  
1.35/1.05  
1.45/1.15  
1.55/1.25  
1.70/1.35  
1.80/1.50  
1.90/1.60  
2.15/1.70  
2.20/1.80  
2.25/1.90  
2.35/2.00  
2.45/2.10  
2.80/2.15  
3.15/2.48  
3.60/2.80  
3.80/3.10  
4.10/3.40  
5.15/3.75  
5.30/4.05  
5.50/4.55  
6.20/5.00  
6.50/5.50  
8.00/6.10  
9.00/6.65  
9.50/7.05  
10.00/7.80  
13.00/9.10  
16.00/9.90  
17.00/10.00  
18.00/12.00  
21.00/14.00  
26.00/15.00  
29.00/17.00  
30.00/18.00  
33.00/21.00  
39.00/21.50  
N/A  
.300  
.290  
.280  
.270  
.260  
.250  
.250  
.250  
.250  
.240  
.230  
.220  
.210  
.200  
.190  
.170  
.165  
.160  
.150  
.150  
.145  
.140  
.135  
.130  
.130  
.125  
.125  
.120  
.120  
.120  
.120  
.120  
.120  
.120  
.120  
.120  
.120  
.120  
.120  
.120  
.120  
11 5ꢀ  
12 5ꢀ  
13 5ꢀ  
14 5ꢀ  
15 5ꢀ  
16 5ꢀ  
18 5ꢀ  
22 5ꢀ  
24 5ꢀ  
.10  
27 5ꢀ  
N/A  
.10  
N/A  
30 5ꢀ  
N/A  
.10  
N/A  
33 5ꢀ  
N/A  
.10  
N/A  
* Other tolerances are available, see page 8  
14  
®
®
Accu-F / Accu-P  
0805 Typical Electrical Tables  
Capacitance  
Ref  
Effective  
Capacitance  
Max/Min  
(pF)  
Max  
ESR  
()  
Ref  
Freq.  
MHz  
Effective  
Capacitance  
Max/Min  
(pF)  
Max  
ESR  
()  
Ref  
Freq.  
MHz  
Effective  
Capacitance  
Max/Min  
(pF)  
Max  
ESR  
()  
Ref  
Freq.  
MHz  
Effective  
Capacitance  
Max/Min  
(pF)  
Max  
ESR  
()  
Self  
& Tolerance* Resonance Freq.  
@ 1 MHz  
(pF)  
Frequency MHz  
(GHz)  
0.1 0.05  
0.2 0.05  
0.3 0.05  
0.4 0.05  
0.5 0.05  
0.6 0.10  
0.7 0.10  
0.8 0.10  
0.9 0.10  
1.0 0.10  
1.1 0.10  
1.2 0.10  
1.3 0.10  
1.4 0.10  
1.5 0.10  
1.6 0.10  
1.7 0.10  
1.8 0.10  
1.9 0.10  
2.0 0.10  
2.1 0.10  
2.2 0.10  
2.4 0.25  
2.7 0.25  
3.0 0.25  
3.3 0.25  
3.6 0.25  
3.9 0.25  
4.3 0.25  
4.7 0.25  
5.1 0.25  
5.6 0.25  
6.2 0.25  
6.8 0.25  
7.5 0.05  
8.2 0.05  
9.1 0.05  
10 5ꢀ  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
500  
496  
492  
488  
487  
486  
484  
483  
482  
481  
479  
477  
475  
473  
470  
465  
463  
462  
459  
456  
451  
447  
444  
442  
435  
434  
432  
429  
423  
420  
418  
416  
414  
414  
411  
408  
406  
405  
403  
401  
400  
399  
397  
396  
395  
394  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
750  
754  
739  
734  
733  
731  
729  
728  
726  
724  
722  
720  
716  
714  
711  
707  
704  
704  
701  
697  
691  
688  
684  
683  
677  
675  
673  
670  
668  
665  
663  
662  
661  
660  
659  
657  
656  
655  
654  
652  
651  
650  
649  
648  
647  
646  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
999  
993  
987  
980  
979  
977  
975  
974  
972  
970  
967  
964  
962  
960  
957  
952  
948  
947  
944  
940  
936  
934  
930  
927  
925  
924  
922  
920  
918  
916  
915  
914  
913  
912  
911  
910  
908  
907  
907  
906  
905  
904  
903  
902  
901  
900  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
1
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
5.6  
5.4  
5.1  
4.9  
4.8  
4.6  
4.5  
4.3  
4.2  
4.1  
4.0  
3.9  
3.8  
3.6  
3.4  
3.3  
3.1  
3.0  
2.9  
2.7  
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
2.0  
1.9  
1.8  
1.8  
1.6  
1.6  
1.5  
1.5  
1.4  
1.3  
1.3  
1.2  
1.2  
1.1  
1.0  
1.0  
0.9  
0.9  
0.9  
0.8  
250  
248  
245  
243  
242  
242  
241  
240  
239  
239  
238  
237  
236  
235  
233  
231  
229  
228  
227  
223  
220  
218  
215  
212  
208  
206  
203  
199  
196  
193  
190  
187  
184  
182  
179  
176  
173  
171  
168  
165  
163  
159  
157  
155  
153  
152  
1.20/0.90  
1.30/1.00  
1.40/1.10  
1.50/1.20  
1.60/1.30  
1.70/1.40  
1.80/1.50  
1.90/1.60  
2.00/1.70  
2.10/1.80  
2.20/1.90  
2.30/2.00  
2.40/2.10  
2.85/2.15  
3.19/2.45  
3.51/2.75  
3.83/3.05  
4.16/3.35  
4.48/3.65  
4.91/4.05  
5.35/4.45  
5.78/4.85  
6.00/5.35  
7.00/5.95  
7.20/6.55  
8.64/7.00  
9.40/7.70  
10.37/8.60  
11.00/9.50  
12.50/10.45  
13.61/11.40  
14.75/12.35  
15.88/13.30  
17.02/14.25  
18.16/15.20  
20.42/17.10  
22.70/19.00  
24.95/20.90  
27.20/22.80  
30.78/25.69  
34.23/28.50  
37.85/31.35  
41.19/34.20  
44.79/37.05  
49.99/40.85  
55.19/44.65  
.320  
.290  
.270  
.260  
.240  
.230  
.220  
.210  
.200  
.200  
.190  
.190  
.180  
.170  
.160  
.150  
.140  
.140  
.130  
.130  
.120  
.120  
.100  
.100  
.100  
.100  
.090  
.080  
.080  
.080  
.070  
.070  
.070  
.070  
.070  
.070  
.060  
.060  
.060  
.060  
.050  
.050  
.050  
.050  
.050  
.050  
1.20/0.90  
1.30/1.00  
1.40/1.10  
1.50/1.20  
1.60/1.20  
1.70/1.40  
1.85/1.50  
1.95/1.60  
2.05/1.70  
2.15/1.80  
2.30/1.90  
2.40/2.00  
2.60/2.10  
3.13/2.29  
3.47/2.55  
3.76/2.86  
4.04/3.10  
4.35/3.42  
4.67/3.72  
5.11/4.13  
5.52/4.53  
5.94/4.94  
6.82/5.40  
7.52/6.00  
8.21/6.88  
9.02/7.10  
9.83/7.90  
10.88/8.76  
11.92/9.76  
13.23/10.50  
14.50/11.90  
15.80/13.00  
17.22/14.00  
18.56/15.19  
19.90/16.28  
22.69/18.57  
25.38/20.78  
28.08/21.00  
31.31/25.61  
36.10/32.20  
40.58/33.20  
46.65/35.00  
52.22/38.00  
59.08/47.08  
70.50/53.04  
81.99/59.00  
.300  
.270  
.250  
.230  
.220  
.210  
.210  
.200  
.190  
.190  
.180  
.170  
.170  
.170  
.150  
.140  
.140  
.130  
.120  
.120  
.110  
.110  
.100  
.100  
.100  
.100  
.080  
.080  
.080  
.080  
.080  
.080  
.080  
.080  
.080  
.070  
.070  
.070  
.070  
.070  
.070  
.070  
.070  
.070  
.060  
.060  
1.20/0.90  
1.30/1.00  
1.40/1.10  
1.50/1.10  
1.60/1.20  
1.70/1.40  
2.00/1.50  
2.05/1.60  
2.10/1.70  
2.25/1.80  
2.40/1.90  
2.60/2.00  
2.80/2.14  
3.17/2.30  
3.52/2.60  
3.84/2.93  
4.15/3.19  
4.50/3.53  
4.85/3.86  
5.32/4.25  
5.79/4.60  
6.25/5.20  
7.27/5.60  
8.08/6.10  
8.90/6.96  
9.85/7.50  
10.80/8.25  
12.02/9.10  
13.24/10.00  
15.07/11.00  
16.90/12.82  
18.87/14.00  
20.84/16.00  
22.62/19.13  
27.00/20.89  
33.00/22.10  
38.00/23.15  
42.00/24.00  
N/A  
.270  
.250  
.240  
.230  
.220  
.220  
.220  
.210  
.210  
.200  
.200  
.190  
.190  
.190  
.170  
.160  
.160  
.150  
.150  
.150  
.140  
.140  
.120  
.120  
.120  
.120  
.110  
.110  
.110  
.110  
.110  
.110  
.110  
.110  
.100  
.100  
.100  
.100  
.090  
.090  
.090  
.090  
.090  
.090  
.090  
.090  
1.20/0.90  
1.30/1.00  
1.40/1.10  
1.50/1.20  
1.60/1.30  
1.70/1.40  
2.00/1.50  
2.20/1.60  
2.30/1.70  
2.40/1.80  
2.60/1.95  
2.80/2.06  
3.06/2.17  
3.31/2.31  
3.67/2.60  
4.00/3.00  
4.38/3.30  
4.80/3.60  
5.23/3.90  
5.79/4.50  
6.36/4.80  
7.16/5.74  
8.25/5.90  
9.35/6.80  
10.46/7.32  
11.75/8.42  
13.04/9.53  
14.70/10.70  
15.37/11.80  
16.00/12.20  
N/A  
.300  
.290  
.280  
.270  
.260  
.260  
.250  
.240  
.230  
.230  
.220  
.210  
.210  
.210  
.200  
.190  
.190  
.190  
.180  
.180  
.170  
.160  
.150  
.150  
.150  
.150  
.150  
.150  
.140  
.140  
.140  
.140  
.140  
.130  
.130  
.130  
.130  
.130  
.130  
.130  
.130  
.120  
.120  
.120  
.120  
.110  
11 5ꢀ  
12 5ꢀ  
13 5ꢀ  
N/A  
14 5ꢀ  
N/A  
15 5ꢀ  
N/A  
16 5ꢀ  
N/A  
18 5ꢀ  
N/A  
20 5ꢀ  
N/A  
22 5ꢀ  
N/A  
24 5ꢀ  
N/A  
27 5ꢀ  
N/A  
N/A  
30 5ꢀ  
N/A  
N/A  
33 5ꢀ  
N/A  
N/A  
36 5ꢀ  
N/A  
N/A  
39 5ꢀ  
N/A  
N/A  
43 5ꢀ  
N/A  
N/A  
47 5ꢀ  
N/A  
N/A  
* Other tolerances are available, see page 8  
15  
®
Accu-P  
1210 Typical Electrical Tables  
Capacitance  
Self  
Ref  
Effective  
Capacitance  
Max/Min  
(pF)  
Max  
ESR  
()  
Ref  
Freq.  
(MHz)  
Effective  
Capacitance  
Max/Min  
(pF)  
Max  
ESR  
()  
Ref  
Freq.  
(MHz)  
Effective  
Capacitance  
Max/Min  
(pF)  
Max  
ESR  
()  
Ref  
Freq.  
(MHz)  
Effective  
Capacitance  
Max/Min  
(pF)  
Max  
ESR  
()  
& Tolerance* Resonance Freq.  
@ 1 MHz  
(pF)  
Frequency (MHz)  
(GHz)  
1.0 0.25  
1.2 0.25  
1.5 0.25  
1.8 0.25  
2.2 0.25  
2.7 0.25  
3.3 0.25  
3.6 0.25  
3.9 0.25  
4.3 0.25  
4.7 0.25  
5.1 0.25  
5.6 0.25  
6.2 0.25  
6.8 0.25  
7.5 0.25  
8.2 0.25  
9.1 0.25  
10 5ꢀ  
4.98  
4.55  
4.07  
9.71  
9.96  
2.70  
2.60  
2.50  
2.40  
2.30  
2.20  
2.10  
2.00  
1.90  
1.80  
1.70  
1.70  
1.60  
1.50  
1.50  
1.40  
1.30  
1.30  
1.20  
1.20  
1.10  
1.10  
1.00  
0.98  
0.96  
0.92  
0.91  
0.88  
0.85  
0.84  
0.82  
0.80  
0.77  
0.73  
0.70  
247  
245  
242  
240  
237  
233  
229  
228  
227  
223  
220  
218  
215  
212  
208  
206  
203  
199  
196  
193  
190  
185  
183  
182  
180  
176  
173  
171  
168  
166  
164  
163  
162  
161  
159  
158  
157  
155  
153  
152  
1.23/0.75  
1.32/0.95  
.350  
.310  
.250  
.200  
.170  
.140  
.140  
.130  
.130  
.120  
.120  
.110  
.110  
.100  
.100  
.100  
.100  
.090  
.090  
.090  
.080  
.080  
.080  
.080  
.080  
.070  
.070  
.070  
.070  
.070  
.070  
.070  
.070  
.070  
.060  
.060  
.060  
.060  
.060  
.060  
495  
491  
486  
482  
476  
466  
463  
462  
458  
456  
451  
447  
441  
442  
435  
434  
432  
429  
423  
420  
418  
416  
415  
414  
411  
408  
406  
405  
403  
402  
401  
401  
400  
399  
399  
398  
397  
396  
396  
395  
1.34/0.86  
1.45/1.00  
.260  
.240  
.230  
.200  
.170  
.140  
.130  
.130  
.120  
.110  
.110  
.110  
.100  
.100  
.100  
.100  
.090  
.090  
.090  
.090  
.080  
.080  
.080  
.080  
.080  
.080  
.080  
.080  
.080  
.080  
.070  
.070  
.070  
.070  
.070  
.070  
.070  
.070  
.070  
.070  
745  
739  
731  
731  
727  
708  
704  
704  
701  
697  
691  
683  
681  
679  
677  
675  
673  
670  
668  
665  
663  
662  
661  
660  
659  
657  
656  
655  
654  
653  
652  
651  
651  
650  
650  
649  
649  
649  
648  
648  
1.46/0.94  
1.64/1.1  
1.82/1.95  
2.4/1.6  
.280  
.260  
.250  
.200  
.180  
.150  
.140  
.140  
.140  
.130  
.130  
.130  
.120  
.110  
.110  
.100  
.100  
.090  
.090  
.090  
.090  
.090  
.090  
.090  
.090  
.080  
.080  
.080  
.080  
.080  
.080  
.080  
.080  
.080  
.080  
.080  
.070  
.070  
.070  
.070  
995  
987  
978  
978  
969  
952  
948  
947  
944  
940  
936  
933  
928  
927  
925  
924  
922  
920  
918  
916  
915  
914  
913  
912  
911  
909  
908  
908  
907  
907  
906  
906  
905  
905  
905  
904  
904  
904  
904  
903  
1.6/0.99  
2.00/1.2  
2.1/1.4  
2.54/1.7  
3.02/2.2  
3.89/2.70  
4.49/3.30  
4.78/3.45  
5.18/3.90  
5.72/4.30  
6.56/4.70  
7.20/5.40  
8.15/6.00  
9.18/7.00  
10.20/7.42  
11.36/8.00  
13.00/9.10  
15.11/10.25  
17.22/11.06  
N/A  
.350  
.320  
.270  
.210  
.200  
.170  
.160  
.160  
.150  
.140  
.140  
.140  
.140  
.130  
.130  
.130  
.130  
.130  
.130  
.130  
.120  
.120  
.120  
.110  
.110  
.110  
.110  
.110  
.110  
.110  
.110  
.110  
.110  
.110  
.110  
.110  
.110  
.110  
.110  
.110  
1.6/1.23  
1.75/1.3  
2.1/1.55  
2.21/1.56  
2.48/1.95  
2.68/2.00  
2.85/2.1  
3.73/2.63  
4.33/3.23  
4.50/3.32  
4.85/3.75  
5.32/4.29  
5.94/4.60  
6.36/5.10  
7.17/5.67  
7.99/6.10  
8.81/6.93  
9.58/7.60  
10.68/8.31  
12.10/9.66  
13.51/10.05  
15.07/11.33  
16.90/12.82  
18.80/13.60  
20.85/16.00  
22.62/17.00  
25.12/18.00  
30.00/24.00  
35.00/26.00  
42.00/27.00  
N/A  
1
3.42/2.45  
3.49/2.55  
4.02/3.05  
4.09/3.15  
4.18/3.35  
4.32/3.43  
4.53/3.65  
4.66/3.73  
5.01/4.05  
5.11/4.14  
5.48/4.45  
5.62/4.50  
5.88/4.85  
6.04/4.90  
6.49/5.35  
6.72/5.56  
7.19/5.95  
7.26/6.07  
7.38/6.55  
8.16/6.42  
8.60/7.90  
8.90/7.25  
9.36/7.70  
9.76/7.96  
10.34/8.60  
11.33/9.50  
12.50/10.45  
13.61/11.40  
14.75/12.35  
15.89/13.30  
17.02/14.25  
18.16/15.20  
20.42/17.10  
22.70/19.00  
24.95/20.90  
27.20/22.60  
26.39/23.75  
30.78/25.65  
31.93/26.50  
34.23/28.50  
36.51/30.40  
37.65/31.35  
38.83/32.30  
41.20/34.20  
44.79/37.05  
49.99/40.85  
55.69/44.65  
10.87/8.88  
11.97/9.79  
13.23/10.83  
14.59/11.90  
15.64/13.00  
17.22/14.00  
18.56/15.19  
19.90/16.28  
22.69/18.57  
25.36/20.78  
28.06/22.96  
31.31/25.60  
32.91/26.00  
36.10/28.00  
37.60/30.76  
40.50/33.20  
44.63/34.50  
46.65/35.00  
48.51/37.00  
52.22/41.00  
59.00/43.00  
70.00/46.00  
81.00/53.00  
11 5ꢀ  
12 5ꢀ  
N/A  
13 5ꢀ  
N/A  
14 5ꢀ  
N/A  
15 5ꢀ  
N/A  
16 5ꢀ  
N/A  
18 5ꢀ  
N/A  
20 5ꢀ  
N/A  
22 5ꢀ  
N/A  
24 5ꢀ  
N/A  
25 5ꢀ  
N/A  
N/A  
27 5ꢀ  
N/A  
N/A  
28 5ꢀ  
N/A  
N/A  
30 5ꢀ  
N/A  
N/A  
32 5ꢀ  
N/A  
N/A  
33 5ꢀ  
N/A  
N/A  
34 5ꢀ  
N/A  
N/A  
36 5ꢀ  
N/A  
N/A  
39 5ꢀ  
N/A  
N/A  
43 5ꢀ  
N/A  
N/A  
47 5ꢀ  
N/A  
N/A  
* Other tolerances are available, see page 8  
16  
®
®
Accu-F / Accu-P  
High Frequency Characteristics  
Typical ESR vs. Frequency  
®
Accu-P 0201  
1±±±  
9±±  
8±±  
7±±  
0.8pF  
1.8pF  
6±±  
5±±  
1
4±±  
3±±  
2.2pF  
3.3pF  
2±±  
1±±  
4.7pF  
6.8pF  
±
5±±  
1±±±  
15±±  
2±±±  
25±±  
3±±±  
Frequency (MHzꢀ  
Typical SRF vs. Capacitance  
®
Accu-P 0201  
8
7
6
5
4
3
2
1
±
3
4
5
6
7
8
9
1±  
SRF (GHzꢀ  
Typical Q vs. Frequency  
®
Accu-P 0201  
1±±±  
±.8pF  
Q
1±±  
1.8pF  
3.9pF  
4.7pF  
6.8pF  
1±  
5±±  
1±±±  
15±±  
2±±±  
25±±  
3±±±  
Frequency (MHzꢀ  
17  
®
®
Accu-F / Accu-P  
High Frequency Characteristics  
Typical ESR vs. Frequency  
Typical ESR vs. Frequency  
® ®  
®
Accu-P 0402  
Accu-F /Accu-P 0603  
1
±.25  
1.0pF  
±.2  
2.2pF  
2.7pF  
10pF  
±.15  
±.1  
1
4.7pF  
±.1  
10pF  
22pF  
±.±5  
±
±
5±±  
1±±±  
Frequency (MHzꢀ  
Measured on Boonton 34A  
15±±  
2±±±  
25±±  
±.±1  
±
±.5  
Measured on Boonton 34-A  
(34-A limits measurements to 3GHzꢀ  
1
1.5  
2
2.5  
3GHz  
Typical Q vs. Frequency  
Typical Q vs. Frequency  
® ®  
®
Accu-P 0402  
Accu-F /Accu-P 0603  
1±±±±  
1±±±  
1±±  
1±  
1±±±±  
1±±±  
1 pF  
2.2 pF  
4.7 pF  
1±±  
1±  
10 pF  
10pF  
22pF  
2.7pF  
1
±
5±±  
1±±±  
15±±  
2±±±  
25±±  
3±±±  
±
±.5  
Measured on Boonton 34-A  
(34-A limits measurements to 3GHzꢀ  
1
1.5  
2
2.5  
3GHz  
Frequency (MHzꢀ  
Typical Self Resonant Frequency vs. Capacitance  
Typical Self Resonant Frequency vs. Capacitance  
®
®
®
Accu-F /Accu-P 0603  
Accu-P 0402  
GHz  
10  
8
7
6
5
4
3
2
1
±
1
±
2
4
6
8
1±  
12  
0.1  
CAPACITANCE (pFꢀ  
1
10  
100  
pF  
Measured on Wiltron 36± Vector Analyzer  
L (self inductance)  
0.78 nH  
~
NOTE  
L and SRF are obtained from the measured increase in  
effective capacitance as the frequency is increased  
Measured on the Boonton 34-A  
18  
®
®
Accu-F / Accu-P  
High Frequency Characteristics  
Typical ESR vs. Frequency  
Accu-F /Accu-P 0805  
Typical ESR vs. Frequency  
®
®
®
Accu-P 1210  
1
1
1pF  
1pF  
3.3pF  
3.3pF  
±.1  
1
±.1  
10pF  
33pF  
33pF  
±.±1  
±.±1  
±
±.5  
Measured on Boonton 34-A  
(34-A limits measurements to 3GHzꢀ  
1
1.5  
2
2.5  
3GHz  
±
±.5  
Measured on Boonton 34-A  
(34-A limits measurements to 3GHzꢀ  
1
1.5  
2
2.5  
3GHz  
Typical Q vs. Frequency  
Accu-F /Accu-P 0805  
Typical Q vs. Frequency  
®
®
®
Accu-P 1210  
1±±±±  
1±±±  
1±±±±  
1±±±  
1±±  
1±  
1±±  
1±  
1pF  
1pF  
3.3pF  
3.3pF  
2.5  
10pF  
10pF  
33pF  
33pF  
±
±.5  
1
1.5  
2
3GHz  
±
±.5  
1
1.5  
2
2.5  
3GHz  
Measured on Boonton 34-A  
(34-A limits measurements to 3GHzꢀ  
Measured on Boonton 34-A  
(34-A limits measurements to 3GHzꢀ  
Typical Self Resonant Frequency vs. Capacitance  
Typical Self Resonant Frequency vs. Capacitance  
®
®
®
Accu-P 1210  
Accu-F /Accu-P 0805  
GHz  
10  
GHz  
10  
1
1
0.1  
0.1  
1
10  
100  
pF  
1
10  
100  
pF  
L (self inductance)  
1.02 nH  
~
L (self inductance)  
NOTE  
0.82 nH  
~
NOTE  
L and SRF are obtained from the measured increase in  
L and SRF are obtained from the measured increase in  
effective capacitance as the frequency is increased  
effective capacitance as the frequency is increased  
Measured on the Boonton 34-A  
Measured on the Boonton 34-A  
19  
®
®
Accu-F / Accu-P  
Environmental / Mechanical Characteristics  
ENVIRONMENTAL CHARACTERISTICS  
TEST  
CONDITIONS  
REQUIREMENT  
Life (Endurance)  
MIL-STD-202F Method 108A  
125°C, 2UR,1000 hours  
No visible damage  
C/C 2ꢀ for C5pF  
C 0.25pF for C<5pF  
Accelerated Damp  
85°C, 85ꢀ RH, UR, 1000 hours  
No visible damage  
Heat Steady State  
MIL-STD-202F Method 103B  
C/C 2ꢀ for C5pF  
C 0.25pF for C<5pF  
1
Temperature Cycling  
MIL-STD-202F Method 107E  
MIL-STD-883D Method 1010.7  
-55°C to +125°C, 15 cycles – Accu-P®  
-55°C to +125°C, 5 cycles – Accu-F®  
No visible damage  
C/C 2ꢀ for C5pF  
C 0.25pF for C<5pF  
Resistance to Solder Heat  
IEC-68-2-58  
260°C 5°C for 10 secs  
C remains within initial limits  
MECHANICAL CHARACTERISTICS  
TEST  
CONDITIONS  
REQUIREMENT  
Solderability  
IEC-68-2-58  
Components completely immersed in a  
solder bath at 235°C for 2 secs.  
Terminations to be well tinned, minimum 95ꢀ  
coverage  
Leach Resistance  
IEC-68-2-58  
Components completely immersed in a  
solder bath at 260 5°C for 60 secs.  
Dissolution of termination faces 15ꢀ of area  
Dissolution of termination edges 25ꢀ of length  
Adhesion  
A force of 5N applied for 10 secs.  
No visible damage  
MIL-STD-202F Method 211A  
Termination Bond Strength  
IEC-68-2-21 Amend. 2  
Tested as shown in diagram  
No visible damage  
C/C 2ꢀ for C5pF  
C 0.25pF for C<5pF  
D
D = 3mm Accu-P  
D = 1mm Accu-F  
45mm  
45mm  
Robustness of Termination  
IEC-68-2-21 Amend. 2  
A force of 5N applied for 10 secs.  
55Hz to 2000Hz, 20G  
No visible damage  
No visible damage  
High Frequency Vibration  
MIL-STD-202F Method 201A,  
®
204D (Accu-P only)  
Storage  
12 months minimum with components  
stored in “as received” packaging  
Good solderability  
Average capacitance with histogram printout for  
capacitance distribution;  
QUALITY & RELIABILITY  
Accu-P is based on well established thin-film technology  
and materials.  
®
IR and Breakdown Voltage distribution;  
Temperature Coefficient;  
Solderability;  
• ON-LINE PROCESS CONTROL  
Dimensional, mechanical and temperature stability.  
This program forms an integral part of the production cycle  
and acts as a feedback system to regulate and control  
production processes. The test procedures, which are  
integrated into the production process, were developed  
after long research work and are based on the highly  
developed semiconductor industry test procedures and  
equipment. These measures help AVX to produce a con-  
sistent and high yield line of products.  
QUALITY ASSURANCE  
The reliability of these thin-film chip capacitors has been  
studied intensively for several years. Various measures  
have been taken to obtain the high reliability required today  
by the industry. Quality assurance policy is based on well  
established international industry standards. The reliability  
of the capacitors is determined by accelerated testing  
under the following conditions:  
• FINAL QUALITY INSPECTION  
Life (Endurance)  
Accelerated Damp  
Heat Steady State  
125°C, 2UR, 1000 hours  
Finished parts are tested for standard electrical parameters  
and visual/mechanical characteristics. Each production lot  
is 100ꢀ evaluated for: capacitance and proof voltage at  
2.5 UR. In addition, production is periodically evaluated for:  
85°C, 85ꢀ RH, UR,  
1000 hours.  
2±  
®
®
Accu-F / Accu-P  
Performance Characteristics RF Power Applications  
ESR and therefore RF heating. Values of ESR for  
RF POWER APPLICATIONS  
In RF power applications capacitor losses generate heat. Two  
factors of particular importance to designers are:  
®
Accu-P capacitors are significantly less than those of  
ceramic MLC components currently available.  
• Minimizing the generation of heat.  
• Dissipating heat as efficiently as possible.  
HEAT DISSIPATION  
• Heat is dissipated from a capacitor through a variety of  
paths, but the key factor in the removal of heat is the  
thermal conductivity of the capacitor material.  
• The higher the thermal conductivity of the capacitor, the  
more rapidly heat will be dissipated.  
CAPACITOR HEATING  
1
• The major source of heat generation in a capacitor in RF  
power applications is a function of RF current (I) and ESR,  
from the relationship:  
• The table below illustrates the importance of thermal  
®
2
conductivity to the performance of Accu-P in power  
Power dissipation = I RMS x ESR  
applications.  
®
• Accu-P capacitors are specially designed to minimize  
PRODUCT  
MATERIAL  
Alumina  
Magnesium Titanate  
THERMAL CONDUCTIVITY W/mK  
®
Accu-P  
Microwave MLC  
18.9  
6.0  
Power Handling  
®
Accu-P 10pF  
Amps  
8
6
4
Data used in calculating the graph:  
Thermal impedance of capacitors:  
0402  
0603  
0805  
1210  
17°C/W  
12°C/W  
6.5°C/W  
5°C/W  
121±  
1210  
±8±5  
0805  
±6±3  
±4±2  
Thermal impedance measured using RF generator,  
amplifier and strip-line transformer.  
2
0
ESR of capacitors measured on Boonton 34A  
0
200 400 600 800 1000 1200 1400MHz  
The thermal impedance expresses the temperature difference  
in °C between chip center and termination caused by  
a power dissipation of 1 watt in the chip. It is expressed in  
°C/W.  
THERMAL IMPEDANCE  
Thermal impedance of Accu-P chips is shown below com-  
pared with the thermal impedance of Microwave MLCs.  
®
CAPACITOR TYPE  
Accu-P®  
CHIP SIZE  
THERMAL IMPEDANCE (°C/W)  
0805  
1210  
6.5  
5
Microwave MLC  
0505  
1210  
12  
7.5  
ADVANTAGES OF ACCU-P®  
IN RF POWER CIRCUITS  
The optimized design of Accu-P offers the designer of RF  
power circuits the following advantages:  
PRACTICAL APPLICATION  
IN RF POWER CIRCUITS  
®
• There is a wide variety of different experimental methods  
for measuring the power handling performance of a  
capacitor in RF power circuits. Each method has its  
own problems and few of them exactly reproduce the  
conditions present in “real” circuit applications.  
• Similarly, there is a very wide range of different circuit appli-  
cations, all with their unique characteristics and operating  
conditions which cannot possibly be covered by such  
“theoretical” testing.  
• Reduced power losses due to the inherently low ESR of  
®
Accu-P .  
• Increased power dissipation due to the high thermal  
®
conductivity of Accu-P .  
• THE ONLY TRUE TEST OF A CAPACITOR IN ANY PARTICULAR  
APPLICATION IS ITS PERFORMANCE UNDER OPERATING  
CONDITIONS IN THE ACTUAL CIRCUIT.  
21  
®
®
Accu-F / Accu-P  
Application Notes  
GENERAL  
HANDLING  
®
®
Accu-F and Accu-P SMD capacitors are designed for  
soldering to printed circuit boards or other substrates. The  
construction of the components is such that they will with-  
stand the time/temperature profiles used in both wave and  
reflow soldering methods.  
SMD capacitors should be handled with care to avoid damage  
or contamination from perspiration and skin oils. The use of  
plastic tipped tweezers or vacuum pick-ups is strongly recom-  
mended for individual components. Bulk handling should  
ensure that abrasion and mechanical shock are minimized. For  
automatic equipment, taped and reeled product gives the  
ideal medium for direct presentation to the placement  
machine.  
1
CIRCUIT BOARD TYPE  
COMPONENT PAD DESIGN  
®
The circuit board types which may be used with Accu-F and  
Component pads must be designed to achieve good  
joints and minimize component movement during reflow  
soldering. Pad designs are given below for both wave and  
reflow soldering.  
®
Accu-P are as follows:  
®
Accu-F : All flexible types of circuit boards  
(eg. FR-4, G-10).  
®
The basis of these designs is:  
Accu-P : All flexible types of circuit boards  
(eg. FR-4, G-10) and also alumina.  
a. Pad width equal to component width. It is permissible to  
decrease this to as low as 85ꢀ of component width but  
it is not advisable to go below this.  
For other circuit board materials, please consult factory.  
b. Pad overlap 0.5mm beneath large components. Pad  
overlap about 0.3mm beneath small components.  
c. Pad extension of 0.5mm for reflow of large components  
and pad extension about 0.3mm for reflow of small com-  
ponents. Pad extension about 1.0mm for wave soldering.  
WAVE SOLDERING  
DIMENSIONS: millimeters (inches)  
1.5  
(±.±59ꢀ  
1.5  
(±.±59ꢀ  
5.±  
(±.197ꢀ  
±.8  
(±.±31ꢀ  
±.26  
1.2  
(±.±47ꢀ  
1.25  
(±.±49ꢀ  
4.±  
(±.157ꢀ  
(±.±1±ꢀ  
2.±  
(±.±79ꢀ  
±.4±  
1.±  
(±.±39ꢀ  
(±.±16ꢀ  
2.1  
(±.±83ꢀ  
±.5  
(±.±2±ꢀ  
1.±6  
(±.±42ꢀ  
3.1  
(±.122ꢀ  
3.1  
(±.122ꢀ  
±.6  
(±.±24ꢀ  
±.7  
(±.±28ꢀ  
±.4±  
(±.±16ꢀ  
±.8  
(±.±31ꢀ  
±.34  
(±.±13ꢀ  
1.5  
(±.±59ꢀ  
1.25  
(±.±49ꢀ  
1.2  
(±.±47ꢀ  
1.5  
(±.±59ꢀ  
±.55  
(±.±22ꢀ  
1.25  
(±.±49ꢀ  
±.8  
(±.±31ꢀ  
±.8  
(±.±31ꢀ  
2.5  
(±.±98ꢀ  
0603  
0805  
1210  
Accu-P®  
0201  
Accu-P®  
0402  
Accu-P®  
0603  
Accu-F®  
Accu-P®  
Accu-F®  
Accu-P®  
REFLOW SOLDERING  
DIMENSIONS: millimeters (inches)  
1.±  
(±.±39ꢀ  
1.±  
4.±  
(±.157ꢀ  
±.26  
(±.±1±ꢀ  
±.8  
±.85  
(±.±39ꢀ  
(±.±31ꢀ  
(±.±33ꢀ  
±.26  
(±.±1±ꢀ  
±.6  
2.±  
(±.±79ꢀ  
3.±  
(±.±24ꢀ  
2.3  
(±.±91ꢀ  
2.3  
(±.±91ꢀ  
±.6  
(±.±24ꢀ  
(±.118ꢀ  
±.7  
(±.±28ꢀ  
1.7  
1.±  
(±.±39ꢀ  
±.78  
(±.±3±ꢀ  
±.5  
(±.±68ꢀ  
(±.±2±ꢀ  
±.85  
(±.±33ꢀ  
±.8  
(±.±31ꢀ  
±.6  
(±.±24ꢀ  
±.34  
(±.±13ꢀ  
±.26  
(±.±1±ꢀ  
1.±  
(±.±39ꢀ  
1.±  
(±.±39ꢀ  
±.8  
(±.±31ꢀ  
±.8  
(±.±31ꢀ  
±.55  
(±.±22ꢀ  
1.25  
(±.±49ꢀ  
2.5  
(±.±98ꢀ  
0603  
0805  
1210  
Accu-P®  
0201  
Accu-P®  
0402  
Accu-P®  
0603  
Accu-P®  
Accu-F®  
Accu-P®  
Accu-F®  
22  
®
®
Accu-F / Accu-P  
Application Notes  
PREHEAT & SOLDERING  
CLEANING RECOMMENDATIONS  
The rate of preheat in production should not exceed 4°C/  
second and a recommended maximum is about 2°C/second.  
Temperature differential from preheat to soldering should not  
exceed 100°C.  
For further specific application or process advice, please consult  
AVX.  
Care should be taken to ensure that the devices are  
thoroughly cleaned of flux residues, especially the space  
beneath the device. Such residues may otherwise become  
conductive and effectively offer a lossy bypass to the device.  
Various recommended cleaning conditions (which must be  
optimized for the flux system being used) are as follows:  
Cleaning liquids. . . . . . . i-propanol, ethanol, acetylacetone,  
water and other standard PCB  
1
COOLING  
cleaning liquids.  
After soldering, the assembly should preferably be allowed  
to cool naturally. In the event of assisted cooling, similar  
conditions to those recommended for preheating should be  
used.  
Ultrasonic conditions . . power-20w/liter max.  
frequency-20kHz to 45kHz.  
Temperature . . . . . . . . . 80°C maximum (if not otherwise  
limited by chosen solvent system).  
Time . . . . . . . . . . . . . . . 5 minutes max.  
HAND SOLDERING & REWORK  
Hand soldering is permissible. Preheat of the PCB to 150°C is  
required. The most preferable technique is to use hot air sol-  
dering tools. Where a soldering iron is used, a temperature  
controlled model not exceeding 30 watts should be used and  
set to not more than 260°C.  
STORAGE CONDITIONS  
®
Recommended storage conditions for Accu-F and  
®
Accu-P prior to use are as follows:  
Temperature . . . . . . . . . . 15°C to 35°C  
Humidity . . . . . . . . . . . . . 65ꢀ  
Air Pressure . . . . . . . . . . 860mbar to 1060mbar  
RECOMMENDED SOLDERING  
PROFILE  
IR REFLOW  
WAVE SOLDERING  
3–5 seconds  
22±  
26±  
24±  
22±  
2±±  
18±  
16±  
14±  
12±  
1±±  
8±  
6±  
4±  
Assembly exits heat–  
21±  
2±±  
19±  
18±  
17±  
16±  
15±  
14±  
13±  
12±  
11±  
1±±  
9±  
no forced cooldown  
1±±°C  
Additional soak time  
to allow uniform  
heating of the  
substrate  
Natural  
Cooling  
186°C solder melting  
temperature  
Assembly enters the  
preheat zone  
45-6± sec.  
above solder  
melting point  
Enter Wave  
Time (secondsꢀ  
Soak time  
2±  
8±  
1ꢀ Activates the flux  
2ꢀ Allows center of board  
temperatures to catch up with  
corners  
7±  
±
1±  
2±  
3±  
4±  
5±  
6±  
7±  
8±  
9± 1±± 11± 12±  
6±  
5±  
4±  
3±  
2±  
±
±.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
Time (minsꢀ  
VAPOR PHASE  
Transfer from  
preheat with  
min. delay &  
temp. loss  
Preheat  
Reflow  
215°C  
215°C  
2±±  
18±  
16±  
14±  
12±  
1±±  
8±  
2±±  
18±  
16±  
14±  
12±  
1±±  
8±  
Duration varies  
Natural  
Cooling  
with thermal mass  
of assembly  
1±–6± secs typical  
Enter  
Vapor  
6±  
6±  
4±  
4±  
2±  
2±  
±
±
10  
20  
30  
40  
50  
60  
70  
Time (minutesꢀ  
Time (secondsꢀ  
23  
®
®
Accu-F /Accu-P  
Automatic Insertion Packaging  
TAPE & REEL  
All tape and reel specifications are in compliance with EIA 481-1-A.  
(equivalent to IEC 286 part 3).  
• 8mm carrier  
• Reeled quantities: Reels of 3,000 per 7" reel or 10,000 pieces per 13" reel  
0201 and 0402 = 5,000 pieces per 7" reel and 20,000 pieces per 13" reel  
1
REEL  
DIMENSIONS: millimeters (inches)  
(1)  
A
B
C
D
E
F
G
180 1.0  
(7.087 0.039)  
1.5 min.  
(0.059 min.)  
13 0.2  
(0.512 0.008)  
20.2 min.  
(0.795 min.)  
50 min.  
(1.969 min.)  
9.6 1.5  
(0.370 0.050)  
14.4 max.  
(0.567 max.)  
Metric dimensions will govern.  
Inch measurements rounded and for reference only.  
(1ꢀ 33±mm (13 inchꢀ reels are available.  
G MAX.  
B*  
C
A
E
F
D*  
FULL RADIUS  
*DRIVE SPOKES OPTIONAL  
IF USED, ASTERISKED  
DIMENSIONS APPLY.  
CARRIER  
DIMENSIONS: millimeters (inches)  
A
B
C
D
E
F
+±.1  
8.0 0.3  
(0.315 0.012)  
3.5 0.05  
(0.138 0.002)  
1.75 0.1  
(0.069 0.004)  
2.0 0.05  
(0.079 0.002)  
4.0 0.1  
(0.157 0.004)  
1.5-±.±  
(0.059-±.±±±)  
+±.±±4  
NOTE: The nominal dimensions of the component compartment (W,Lꢀ are derived from the component size.  
1± PITCHES  
CUMULATIVE  
E
TOLERANCE ON  
TAPE ±.2  
D
F
C
TOP  
TAPE  
W
B
A
L
P = 4mm except 0201 and 0402 where P = 2mm  
P
CENTER LINES  
OF CAVITY  
DIRECTION OF FEED  
NOTE: AVX reserves the right to change the information published herein without notice.  
24  
2
Thin-Film Technology  
®
Accu-L L±6±3/L±8±5  
Thin-Film RF/Microwave Inductors  
25  
®
Accu-L  
SMD High-Q RF Inductor  
2
1± nH Inductor (Top Viewꢀ  
ACCU-L® TECHNOLOGY  
The Accu-L SMD Inductor is based on thin-film multilayer  
technology. This technology provides a level of control on the  
electrical and physical characteristics of the component which  
gives consistent characteristics within a lot and lot-to-lot.  
®
®
The Accu-L inductor is particularly suited for the telecom-  
munications industry where there is a continuing trend  
towards miniaturization and increasing frequencies. The  
Accu-L inductor meets both the performance and tolerance  
®
requirements of present cellular frequencies 450MHz and  
900MHz and of future frequencies, such as 1700MHz,  
1900MHz and 2400MHz.  
The original design provides small size, excellent high-  
frequency performance and rugged construction for reliable  
automatic assembly.  
FEATURES  
APPLICATIONS  
• High Q  
• Mobile Communications  
• Satellite TV Receivers  
• GPS  
• RF Power Capability  
• High SRF  
• Low DC Resistance  
• Ultra-Tight Tolerance on Inductance  
• Standard 0603 and 0805 Chip Size  
• Low Profile  
• Vehicle Locations Systems  
• Filters  
• Matching Networks  
• Rugged Construction  
Taped and Reeled  
26  
®
Accu-L 0603 and 0805  
SMD High-Q RF Inductor  
Operating/Storage  
Temp. Range:  
-55°C to +125°C  
DIMENSIONS: millimeters (inches)  
0603  
0805  
B
1.6±±.1±  
2.11±±.1±  
L
(±.±63±±.±±4ꢀ  
±.81±±.1±  
(±.±32±±.±±4ꢀ  
(±.±83±±.±±4ꢀ  
1.5±±.1±  
(±.±59±±.±±4ꢀ  
W
±.61±±.1±  
(±.±24±±.±±4ꢀ  
±.91±±.13  
(±.±36±±.±±5ꢀ  
T
T
top: ±.± +±.3/-±.±  
(±.±+±.±12ꢀ  
±.25±±.15  
(±.±1±±±.±±6ꢀ  
L
B
bottom:  
±.35±±.2±  
(±.±14±±.±±8ꢀ  
HOW TO ORDER  
L
0805  
4R7  
D
E
W
TR  
Product  
Inductor  
Size  
0603  
0805  
Termination  
Code  
Packaging  
Code  
TR = Tape and Reel  
(3,000/reel)  
Inductance  
Expressed in nH  
(2 significant digits +  
number of zeros)  
for  
values <10nH,  
letter R denotes  
decimal point.  
Example:  
Tolerance  
Specification  
Code  
2
for  
®
L 4.7nH, L 10nH,  
W = Nickel/  
solder coated  
E = Accu-L 0805  
B = 0.1nH  
C = 0.2nH  
D = 0.5nH  
G = 2ꢀ  
J = 5ꢀ  
technology  
(Sn 63, Pb 37)  
®
G = Accu-L 0603  
technology  
4.7nH<L<10nH,  
C = 0.2nH  
D = 0.5nH  
22nH = 220  
4.7nH = 4R7  
ELECTRICAL SPECIFICATIONS TABLE FOR ACCU-L® 0603  
DC  
450 MHz  
900 MHz  
1900 MHz  
2400 MHz  
I
max  
Test Frequency  
Test Frequency  
Test Frequency  
Test Frequency  
(mA)  
DC  
SRF min  
(MHz)  
R
max  
Inductance  
L (nH)  
Q
Q
Q
Q
Available  
()  
L (nH)  
L (nH)  
L (nH)  
Typical  
Typical  
Typical  
Typical  
Inductance Tolerance  
(1)  
1000  
1000  
1000  
1000  
750  
750  
500  
500  
300  
300  
300  
300  
300  
300  
1.2  
1.5  
1.8  
2.2  
2.7  
3.3  
3.9  
4.7  
5.6  
6.8  
8.2  
10.0  
12.0  
15.0  
49  
26  
20  
20  
21  
24  
25  
23  
26  
23  
23  
28  
28  
28  
1.2  
70  
39  
30  
30  
30  
35  
57  
32  
36  
33  
31  
39  
38  
38  
1.2  
134  
1.2  
170  
76  
59  
56  
54  
64  
69  
49  
60  
39  
31  
41  
20  
15  
10000  
10000  
10000  
10000  
9000  
8400  
6500  
5500  
5000  
4500  
3800  
3500  
3000  
2500  
0.04  
0.06  
0.07  
0.08  
0.08  
0.08  
0.12  
0.15  
0.25  
0.30  
0.35  
0.45  
0.50  
0.60  
0.1, 0.2nH  
0.1, 0.2nH  
0.1, 0.2nH  
0.1, 0.2nH  
0.1, 0.2nH  
0.1, 0.2, 0.5nH  
0.1, 0.2, 0.5nH  
0.1, 0.2, 0.5nH  
0.2, 0.5nH  
0.2, 0.5nH  
0.2, 0.5nH  
2ꢀ, 5ꢀ  
1.54  
1.74  
2.2  
2.7  
3.33  
3.9  
4.68  
5.65  
6.9  
8.4  
10  
1.52  
1.73  
2.24  
2.75  
3.39  
4.06  
4.92  
5.94  
7.3  
63  
50  
49  
48  
56  
60  
46  
54  
47  
35  
47  
30  
30  
1.52  
1.72  
2.24  
2.79  
3.47  
4.21  
5.2  
6.23  
8.1  
12.1  
10  
11.8  
14.1  
25.9  
14.1  
17.2  
49.8  
2ꢀ, 5ꢀ  
2ꢀ, 5ꢀ  
13.2  
16.2  
Inductance and Q measured on Agilent 4291B / 4287 using the 16196A test fixture.  
(1ꢀ  
I
measured for 15°C rise at 25°C ambient temperature when soldered to FR-4 board.  
DC  
ELECTRICAL SPECIFICATIONS TABLE FOR ACCU-L® 0805  
DC  
450 MHz  
900 MHz  
1700 MHz  
2400 MHz  
I
max  
Test Frequency  
Test Frequency Test Frequency Test Frequency  
(mA)  
DC  
SRF min  
(MHz)  
R max  
Inductance  
L (nH)  
Q
Q
Q
Q
T = 15°C T = 70°C  
Available  
()  
L (nH)  
L (nH)  
L (nH)  
Typical  
Typical  
Typical  
Typical  
Inductance Tolerance  
(1)  
(2)  
1.2  
1.5  
1.8  
2.2  
2.7  
3.3  
3.9  
4.7  
5.6  
6.8  
8.2  
10  
60  
50  
50  
42  
42  
38  
27  
43  
50  
43  
43  
46  
40  
36  
30  
36  
1.2  
1.5  
1.8  
2.2  
2.7  
3.3  
3.9  
4.8  
5.7  
92  
74  
72  
62  
62  
46  
36  
62  
68  
62  
56  
60  
50  
46  
27  
33  
1.2  
1.5  
1.8  
2.2  
2.8  
3.4  
4.0  
5.3  
6.3  
7.7  
10.0  
13.4  
17.3  
27  
122  
102  
88  
82  
80  
48  
38  
76  
73  
71  
55  
52  
40  
23  
1.2  
1.5  
1.9  
2.3  
2.9  
3.5  
4.1  
5.8  
7.6  
9.4  
15.2  
92  
84  
73  
72  
70  
57  
42  
60  
62  
50  
32  
10000  
10000  
10000  
10000  
10000  
10000  
10000  
5500  
4600  
4500  
3500  
2500  
0.05  
0.05  
0.06  
0.07  
0.08  
0.11  
0.20  
0.10  
0.10  
0.11  
0.12  
0.13  
0.20  
0.20  
0.35  
0.40  
1000  
1000  
1000  
1000  
1000  
750  
750  
750  
750  
750  
750  
750  
750  
750  
500  
500  
2000  
2000  
2000  
2000  
2000  
1500  
1500  
1500  
1500  
1500  
1500  
1500  
1500  
1000  
1000  
1000  
0.1nH, 0.2nH, 0.5nH  
0.1nH, 0.2nH, 0.5nH  
0.1nH, 0.2nH, 0.5nH  
0.1nH, 0.2nH, 0.5nH  
0.1nH, 0.2nH, 0.5nH  
0.1nH, 0.2nH, 0.5nH  
0.1nH, 0.2nH, 0.5nH  
0.1nH, 0.2nH, 0.5nH  
0.5nH  
0.5nH  
0.5nH  
2ꢀ, 5ꢀ  
2ꢀ, 5ꢀ  
2ꢀ, 5ꢀ  
2ꢀ, 5ꢀ  
2ꢀ, 5ꢀ  
7.0  
8.5  
10.6  
12.9  
16.7  
21.9  
27.5  
12  
15  
18  
22  
2400  
2200  
1700  
1400  
(1ꢀ IDC measured for 15°C rise at 25°C ambient temperature  
(2ꢀ IDC measured for 7±°C rise at 25°C ambient temperature  
L, Q, SRF measured on HP 4291A, Boonton 34A and Wiltron 36±  
Vector Analyzer, RDC measured on Keithley 58± micro-ohmmeter.  
27  
®
Accu-L 0603 and 0805  
SMD High-Q RF Inductor  
L0603  
Typical Q vs. Frequency  
Typical Inductance vs. Frequency  
L0603  
L0603  
18±  
16±  
14±  
12±  
1±±  
1±  
1
1.2nH  
15nH  
Q
1±±  
8±  
6±  
8.2nH  
6.8nH  
1.5nH  
5.6nH  
4.7nH  
3.3nH  
2.2nH  
4±  
8.2nH  
15nH  
2±  
1.8nH  
±
1.2nH  
±
1
2
3
±
±.5  
1
1.5  
2
2.5  
3
Frequency (GHzꢀ  
Frequency (GHzꢀ  
2
Measured on AGILENT 4291B/4287  
using the 16196A test fixture  
Measured on AGILENT 4291B/4287  
using the 16196A test fixture  
L0805  
Typical Inductance vs. Frequency  
L0805  
Typical Q vs. Frequency  
L0805  
140  
100  
10  
1
120  
1.2nH  
100  
1.5nH  
22nH  
80  
1.8nH  
15nH  
10nH  
5.6nH  
60  
5.6nH  
1.8nH  
10nH  
40  
15nH  
20  
22nH  
0.01  
0.1  
1
10  
0
0.1  
1
10  
Frequency (GHz)  
Frequency (GHz)  
Measured on HP4291A and  
Boonton 34A Coaxial Line  
Measured on HP4291A and  
Wiltron 36± Vector Analyzer  
Maximum Temperature Rise  
at 25°C ambient temperature (on FR-4)  
L0805  
200  
15nH  
10nH 6.8nH 4.7nH  
2.7nH  
100  
10  
1
0
0.5  
1
1.5  
2
2.5  
3
3.5  
Current (A)  
Temperature rise will typically be no higher than shown by the graph  
28  
®
Accu-L 0603 and 0805  
SMD High-Q RF Inductor  
FINAL QUALITY INSPECTION  
Finished parts are tested for electrical parameters and visual/  
mechanical characteristics.  
Parts are 100ꢀ tested for inductance at 450MHz. Parts are  
100ꢀ tested for RDC. Each production lot is evaluated on a  
sample basis for:  
• Q at test frequency  
• Static Humidity Resistance: 85°C, 85ꢀ RH, 160 hours  
• Endurance: 125°C, IR, 4 hours  
2
ENVIRONMENTAL CHARACTERISTICS  
TEST  
Solderability  
CONDITIONS  
REQUIREMENT  
Terminations to be well tinned.  
No visible damage.  
Components completely immersed in  
a solder bath at 235 5°C for 2 secs.  
Leach Resistance  
Components completely immersed in  
Dissolution of termination faces  
a solder bath at 260 5°C for 60 secs. 15ꢀ of area.  
Dissolution of termination edges  
25ꢀ of length.  
Storage  
Shear  
12 months minimum with components Good solderability  
stored in “as received” packaging.  
Components mounted to a substrate.  
A force of 5N applied normal to the  
line joining the terminations and in  
a line parallel to the substrate.  
No visible damage  
Rapid Change of  
Temperature  
Components mounted to a substrate.  
5 cycles -55°C to +125°C.  
Tested as shown in diagram  
No visible damage  
No visible damage  
Bend Strength  
1mm  
deflection  
45mm  
45mm  
Temperature  
Coefficient of  
Inductance  
(TCL)  
Component placed in  
environmental chamber  
-55°C to +125°C.  
+0 to +125 ppm/°C  
• 106  
L2-L1  
L1 (T2-T1)  
TCL =  
(typical)  
T1 = 25°C  
29  
®
Accu-L 0805  
Application Notes  
HANDLING  
PREHEAT & SOLDERING  
SMD chips should be handled with care to avoid damage or  
contamination from perspiration and skin oils. The use of  
plastic tipped tweezers or vacuum pick-ups is strongly  
recommended for individual components. Bulk handling  
should ensure that abrasion and mechanical shock are min-  
imized. For automatic equipment, taped and reeled product  
is the ideal medium for direct presentation to the placement  
machine.  
The rate of preheat in production should not exceed  
4°C/second. It is recommended not to exceed 2°C/  
second.  
Temperature differential from preheat to soldering should not  
exceed 150°C.  
For further specific application or process advice, please  
consult AVX.  
HAND SOLDERING & REWORK  
CIRCUIT BOARD TYPE  
Hand soldering is permissible. Preheat of the PCB to 100°C  
is required. The most preferable technique is to use hot air  
soldering tools. Where a soldering iron is used, a tempera-  
ture controlled model not exceeding 30 watts should be  
used and set to not more than 260°C. Maximum allowed  
time at temperature is 1 minute. When hand soldering, the  
base side (white side) must be soldered to the board.  
All flexible types of circuit boards may be used (e.g. FR-4,  
G-10) and also alumina.  
2
For other circuit board materials, please consult factory.  
COMPONENT PAD DESIGN  
Component pads must be designed to achieve good joints  
and minimize component movement during soldering.  
COOLING  
Pad designs are given below for both wave and reflow  
soldering.  
After soldering, the assembly should preferably be allowed to  
cool naturally. In the event of assisted cooling, similar condi-  
tions to those recommended for preheating should be used.  
The basis of these designs is:  
a. Pad width equal to component width. It is permissible  
to decrease this to as low as 85ꢀ of component width  
but it is not advisable to go below this.  
CLEANING RECOMMENDATIONS  
b. Pad overlap about 0.3mm.  
Care should be taken to ensure that the devices are thor-  
oughly cleaned of flux residues, especially the space beneath  
the device. Such residues may otherwise become conduc-  
tive and effectively offer a lossy bypass to the device. Various  
recommended cleaning conditions (which must be optimized  
for the flux system being used) are as follows:  
c. Pad extension about 0.3mm for reflow.  
Pad extension about 0.8mm for wave soldering.  
WAVE SOLDERING  
DIMENSIONS: millimeters (inches)  
Cleaning liquids . . . . . . i-propanol, ethanol, acetylace-  
tone, water, and other standard  
PCB cleaning liquids.  
1.3±  
1.2  
(±.±51ꢀ  
(±.±47ꢀ  
Ultrasonic conditions . . power – 20w/liter max.  
frequency – 20kHz to 45kHz.  
3.1  
(±.122ꢀ  
±.5±  
(±.±2±ꢀ  
1.4  
3.8  
Temperature. . . . . . . . . 80°C maximum (if not otherwise  
limited by chosen solvent system).  
(±.±55ꢀ  
(±.15±ꢀ  
1.3±  
(±.±51ꢀ  
Time. . . . . . . . . . . . . . . 5 minutes max.  
1.2  
0603  
Accu-L  
0805  
Accu-L  
(±.±47ꢀ  
±.8  
(±.±31ꢀ  
®
®
1.5  
(±.±59ꢀ  
STORAGE CONDITIONS  
®
Recommended storage conditions for Accu-L prior to use  
are as follows:  
REFLOW SOLDERING  
DIMENSIONS: millimeters (inches)  
Temperature. . . . . . . . . 15°C to 35°C  
Humidity . . . . . . . . . . . 65ꢀ  
Air Pressure . . . . . . . . . 860mbar to 1060mbar  
±.7  
±.9±  
(±.±28ꢀ  
(±.±35ꢀ  
2.3  
(±.±91ꢀ  
±.5±  
(±.±2±ꢀ  
2.8  
1.4  
(±.11±ꢀ (±.±55ꢀ  
±.9±  
(±.±35ꢀ  
0603  
Accu-L  
0805  
Accu-L  
RECOMMENDED SOLDERING  
PROFILE  
±.7  
(±.±28ꢀ  
®
®
±.8  
(±.±31ꢀ  
1.5  
(±.±59ꢀ  
For recommended soldering profile see page 23  
3±  
Thin-Film Technology  
3
CP±4±2/CP±6±3/CP±8±5  
and DB±8±5 3dB 9±°  
Thin-Film RF/Microwave  
Directional Couplers  
31  
Thin-Film Directional Couplers  
CP0402 High Directivity LGA Termination  
GENERAL DESCRIPTION  
DIMENSIONS:  
(Bottom View)  
millimeters (inches)  
ITF (Integrated Thin-Film) TECHNOLOGY  
S
B
The ITF High Directivity LGA Coupler is based on thin-film multilayer  
technology. The technology provides a miniature part with excellent high  
frequency performance and rugged construction for reliable automatic  
assembly.  
A
The ITF Coupler is offered in a variety of frequency bands compatible  
with various types of high frequency wireless systems.  
L
APPLICATIONS  
FEATURES  
T
• Mobile Communications  
• Satellite TV Receivers  
• GPS  
• Inherent Low Profile  
• Self Alignment during Reflow  
• Excellent Solderability  
• Low Parasitics  
W
• Vehicle Location Systems  
• Wireless LANs  
1.±±±±.±5  
(±.±4±±±.±±2ꢀ  
±.58±±.±4  
(±.±23±±.±±2ꢀ  
±.35±±.±5  
(±.±14±±.±±2ꢀ  
±.2±±±.±5  
(±.±±8±±.±±2ꢀ  
±.18±±.±5  
(±.±±7±±.±±2ꢀ  
±.±5±±.±5  
(±.±±2±±.±±2ꢀ  
• Better Heat Dissipation  
L
A
B
S
3
• Operating/Storage Temp  
-40°C to +85°C  
W
• Power Rating 3W RF Cont  
T
HOW TO ORDER  
CP  
0402  
X
X
L
TR  
****  
Frequency  
Style  
Size  
0402  
Type  
Sub Type  
LGA  
Packaging Code  
Termination  
L = LGA Sn90, Pb10  
N = LGA Sn100  
TR = Tape and Reel  
(MHz)  
Directional Coupler  
QUALITY INSPECTION  
TERMINALS (Top View)  
Finished parts are 100ꢀ tested for electrical parameters and  
visual characteristics. Each production lot is evaluated on a  
sample basis for:  
5± OHM  
OUT  
• Static Humidity: 85°C, 85ꢀ RH, 160 hours  
• Endurance: 125°C, IR, 4 hours  
TERMINATION  
Sn90Pb10 or Lead-Free Sn100 Nickel/Solder coating  
compatible with automatic soldering technologies: reflow,  
wave soldering, vapor phase and manual.  
COUPLING  
IN  
Recommended Pad Layout Dimensions  
mm (inches)  
ORIENTATION IN TAPE  
0.63  
(0.025)  
5±  
5±  
OUT  
IN  
OUT  
IN  
OHM  
OHM  
0.25  
(0.010)  
CP  
CP  
0.39  
(0.015)  
1.18  
(0.046)  
*The recommended distance to the PCB Ground Plane is ±.254mm (±.±1±"ꢀ  
32  
Thin-Film Directional Couplers  
CP0402 High Directivity LGA Termination  
COUPLER TYPE SELECTION GRAPH  
Coupling vs. Frequency  
0
CP0402A  
CP0402A  
CP0402A  
CP0402A  
CP0402A  
CP0402A  
AL  
BL  
CL  
DL  
EL  
FL  
****  
****  
****  
****  
****  
****  
-5  
-10  
-15  
-20  
-25  
3
-30  
-35  
-40  
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
Frequency (GHz)  
Intermediate coupling factors are readily available.  
Please contact factory.  
33  
Thin-Film Directional Couplers  
CP0402 High Directivity LGA Termination  
Coupler P/N CP0402AxxxxAL  
CP0402AxxxxALTR  
±
±
Frequency Coupling I. Loss Return Directivity  
I. Loss  
P/N  
Examples  
Application  
Band  
[dB]  
max. Loss  
[dB]  
[dB]  
-4.±  
-8.±  
-12  
-16  
-1±.±  
-2±.±  
[MHz]  
[dB]  
32  
CP±4±2A±836AL 824 - 849  
CP±4±2A±881AL 869 - 894  
CP±4±2A±9±2AL 89± - 915  
CP±4±2A±947AL 935 - 96±  
CP±4±2A±897AL 88± - 915  
CP±4±2A±942AL 925 - 96±  
CP±4±2A1441AL 1429 - 1453 14.5±  
CP±4±2A1747AL 171± - 1785 13.±±  
CP±4±2A1842AL 18±5 - 188± 12.5±  
CP±4±2A188±AL 185± - 191± 12.3±  
CP±4±2A196±AL 193± - 199± 12.±±  
19.1±  
18.6±  
18.5±  
18.±±  
18.5±  
18.±±  
Coupling  
AMPS  
GSM  
R. Loss  
±.25  
±.4±  
31  
-3±.±  
-4±.±  
E-GSM  
PDC  
Isolation  
28  
26  
21  
PCN  
-2±  
-24  
-5±.±  
-6±.±  
PCS  
±.5±  
±.7±  
25  
23  
±.8  
1.6  
2.4  
3.2  
4.±  
PHP  
DECT  
CP±4±2A19±7AL 1895 - 192±  
CP±4±2A189±AL 188± - 19±±  
12.3±  
Frequency (GHzꢀ  
Wireless LAN CP±4±2A2442AL 24±± - 2484 1±.3±  
3
Coupler P/N CP0402AxxxxBL  
CP0402AxxxxBLTR  
±
±
-1±.±  
-2±.±  
Frequency Coupling I. Loss Return Directivity  
I. Loss  
P/N  
Examples  
Application  
Band  
[MHz]  
[dB]  
max. Loss  
[dB]  
[dB]  
-2.±  
-4.±  
-6.±  
-8.±  
[dB]  
CP±4±2A±836BL 824 - 849  
CP±4±2A±881BL 869 - 894  
CP±4±2A±9±2BL 89± - 915  
CP±4±2A±947BL 935 - 96±  
CP±4±2A±897BL 88± - 915  
CP±4±2A±942BL 925 - 96±  
22.±±  
21.7±  
21.5±  
21.±±  
21.5±  
21.±±  
AMPS  
GSM  
Coupling  
R. Loss  
±.2±  
28  
±.25  
±.2±  
27  
28  
27  
24  
-3±.±  
-4±.±  
E-GSM  
PDC  
±.25  
±.3±  
CP±4±2A1441BL 1429 - 1453 17.5±  
CP±4±2A1747BL 171± - 1785 16.±±  
27  
Isolation  
PCN  
CP±4±2A1842BL 18±5 - 188±  
CP±4±2A188±BL 185± - 191±  
-1±.±  
-12.±  
-5±.±  
-6±.±  
23  
15.5±  
PCS  
CP±4±2A196±BL 193± - 199± 15.±±  
±.35  
±.4±  
22  
23  
21  
±.8  
1.6  
2.4  
3.2  
4.±  
PHP  
DECT  
CP±4±2A19±7BL 1895 - 192±  
CP±4±2A189±BL 188± - 19±±  
15.5±  
Frequency (GHzꢀ  
Wireless LAN CP±4±2A2442BL 24±± - 2484 13.3±  
Coupler P/N CP0402AxxxxCL  
CP0402AxxxxCLTR  
±
±
-1±.±  
-2±.±  
Frequency Coupling I. Loss Return Directivity  
I. Loss  
P/N  
Examples  
Application  
Band  
[dB]  
max. Loss  
[dB]  
[dB]  
-2.±  
-4.±  
-6.±  
-8.±  
[MHz]  
[dB]  
Coupling  
R. Loss  
CP±4±2A±836CL 824 - 849  
CP±4±2A±881CL 869 - 894  
CP±4±2A±9±2CL 89± - 915  
CP±4±2A±947CL 935 - 96±  
CP±4±2A±897CL 88± - 915  
CP±4±2A±942CL 925 - 96±  
23.6±  
23.±±  
AMPS  
GSM  
33  
26  
33  
25  
32  
31  
±.2±  
22.5±  
23.±±  
22.5±  
22  
-3±.±  
-4±.±  
E-GSM  
PDC  
CP±4±2A1441CL 1429 - 1453 19.±±  
CP±4±2A1747CL 171± - 1785 17.2±  
CP±4±2A1842CL 18±5 - 188± 17.±±  
CP±4±2A188±CL 185± - 191± 16.8±  
CP±4±2A196±CL 193± - 199± 16.5±  
Isolation  
PCN  
-1±.±  
-12.±  
-5±.±  
-6±.±  
3±  
±.25  
±.45  
3±  
PCS  
29  
±.8  
1.6  
2.4  
3.2  
4.±  
PHP  
DECT  
CP±4±2A19±7CL 1895 - 192±  
CP±4±2A189±CL 188± - 19±±  
16.8±  
Frequency (GHzꢀ  
3±  
28  
Wireless LAN CP±4±2A2442CL 24±± - 2484 14.7±  
Important: Couplers can be used at any frequency within the indicated range.  
34  
Thin-Film Directional Couplers  
CP0402 High Directivity LGA Termination  
Coupler P/N CP0402AxxxxDL  
CP0402AxxxxDLTR  
I. Loss  
±
±
Frequency Coupling I. Loss Return Directivity  
P/N  
Examples  
Application  
Band  
[dB]  
max. Loss  
[dB]  
[dB]  
-2.±  
-4.±  
-6.±  
-8.±  
-1±.±  
-2±.±  
[MHz]  
[dB]  
29  
Coupling  
R. Loss  
CP±4±2A±836DL 824 - 849  
CP±4±2A±881DL 869 - 894  
CP±4±2A±9±2DL 89± - 915  
CP±4±2A±947DL 935 - 96±  
CP±4±2A±897DL 88± - 915  
CP±4±2A±942DL 925 - 96±  
25.2±  
24.8±  
24.7±  
24.1±  
24.7±  
24.1±  
AMPS  
GSM  
28  
2±  
-3±.±  
-4±.±  
±.2±  
E-GSM  
PDC  
CP±4±2A1441DL 1429 - 1453 2±.5±  
CP±4±2A1747DL 171± - 1785 19.±±  
CP±4±2A1842DL 18±5 - 188± 18.5±  
CP±4±2A188±DL 185± - 191± 18.2±  
CP±4±2A196±DL 193± - 199± 18.±±  
CP±4±2A19±7DL 1895 - 192± 18.1±  
CP±4±2A189±DL 188± - 19±± 18.2±  
25  
24  
Isolation  
PCN  
-1±.±  
-12.±  
-5±.±  
-6±.±  
PCS  
±.25  
±.35  
23  
22  
23  
±.8  
1.6  
2.4  
3.2  
4.±  
PHP  
DECT  
Frequency (GHzꢀ  
Wireless LAN CP±4±2A2442DL 24±± - 2484 16.±±  
3
Coupler P/N CP0402AxxxxEL  
CP0402AxxxxELTR  
I. Loss  
±
±
-1±.±  
-2±.±  
Frequency Coupling I. Loss Return Directivity  
P/N  
Examples  
Application  
Band  
[dB]  
max. Loss  
[dB]  
[dB]  
-2.±  
-4.±  
-6.±  
-8.±  
[MHz]  
[dB]  
35  
Coupling  
R. Loss  
CP±4±2A±836EL 824 - 849  
CP±4±2A±881EL 869 - 894  
CP±4±2A±9±2EL 89± - 915  
CP±4±2A±947EL 935 - 96±  
CP±4±2A±897EL 88± - 915  
CP±4±2A±942EL 925 - 96±  
27.2±  
26.8±  
26.5±  
26.±±  
26.5±  
26.±±  
AMPS  
GSM  
±.2±  
34  
25  
-3±.±  
-4±.±  
E-GSM  
PDC  
CP±4±2A1441EL 1429 - 1453 22.3±  
CP±4±2A1747EL 171± - 1785 2±.5±  
CP±4±2A1842EL 18±5 - 188± 2±.3±  
CP±4±2A188±EL 185± - 191±  
29  
27  
Isolation  
PCN  
-1±.±  
-12.±  
-5±.±  
-6±.±  
±.25  
±.35  
PCS  
CP±4±2A196±EL 193± - 199±  
CP±4±2A19±7EL 1895 - 192±  
26  
23  
23  
2±.±±  
±.8  
1.6  
2.4  
3.2  
4.±  
4.8  
5.6  
6.4  
PHP  
DECT  
Frequency (GHzꢀ  
CP±4±2A189±EL 188± - 19±±  
Wireless LAN CP±4±2A2442EL 24±± - 2484 18.±±  
Coupler P/N CP0402AxxxxFL  
CP0402AxxxxFLTR  
±
±
-1±.±  
-2±.±  
Frequency Coupling I. Loss Return Directivity  
I. Loss  
P/N  
Examples  
Application  
Band  
[dB]  
max. Loss  
[dB]  
[dB]  
-1.±  
-2.±  
-3.±  
-4.±  
[MHz]  
[dB]  
29.1±  
28.6±  
28.5±  
28.1±  
28.5±  
28.1±  
CP±4±2A±836FL  
CP±4±2A±881FL  
CP±4±2A±9±2FL  
CP±4±2A±947FL  
CP±4±2A±897FL  
CP±4±2A±942FL  
CP±4±2A1441FL 1429 - 1453 26.5±  
CP±4±2A1747FL 171± - 1785 25.±±  
CP±4±2A1842FL 18±5 - 188± 24.5±  
CP±4±2A188±FL 185± - 191± 24.2±  
CP±4±2A196±FL 193± - 199± 24.±±  
824 - 849  
869 - 894  
89± - 915  
935 - 96±  
88± - 915  
925 - 96±  
31.±±  
3±.7±  
3±.6±  
3±.±±  
3±.6±  
3±.±±  
Coupling  
R. Loss  
AMPS  
GSM  
-3±.±  
-4±.±  
E-GSM  
PDC  
±.2± 25.±±  
23.8±  
11  
Isolation  
PCN  
23.6±  
23.5±  
23.3±  
23.4±  
-5±.±  
-6±.±  
-5.±  
-6.±  
PCS  
±.8  
1.6  
2.4  
3.2  
4.±  
4.8  
5.6  
6.4  
PHP  
CP±4±2A19±7FL 1895 - 192±  
CP±4±2A189±FL 188± - 19±±  
24.2±  
DECT  
23.5±  
Frequency (GHzꢀ  
Wireless LAN CP±4±2A2442FL 24±± - 2484 22.±±  
±.25 22.6±  
Important: Couplers can be used at any frequency within the indicated range.  
35  
Thin-Film Directional Couplers  
CP0603 High Directivity LGA Termination  
GENERAL DESCRIPTION  
ITF (Integrated Thin-Film) TECHNOLOGY  
DIMENSIONS:  
(Bottom View)  
millimeters (inches)  
S
The ITF LGA Coupler is based on thin-film multilayer technology.  
The technology provides a miniature part with excellent high frequency  
performance and rugged construction for reliable automatic assembly.  
B
A
The ITF Coupler is offered in a variety of frequency bands compatible  
with various types of high frequency wireless systems.  
FEATURES  
APPLICATIONS  
L
• Inherent Low Profile  
• Self Alignment during Reflow  
• Excellent Solderability  
• Low Parasitics  
• Mobile Communications  
• Satellite TV Receivers  
• GPS  
T
• Vehicle Location Systems  
• Wireless LANs  
W
• Better Heat Dissipation  
1.6±±±.1±  
(±.±63±±.±±4ꢀ  
±.84±±.1±  
(±.±33±±.±±4ꢀ  
±.25±±.±5  
A
• Operating/Storage Temp  
-40°C to +85°C  
L
(±.±1±±±.±±2ꢀ  
3
±.2±±±.±5  
W
B
• Power Rating 3W RF Cont  
(±.±±8±±.±±2ꢀ  
±.6±±±.1±  
(±.±24±±.±±4ꢀ  
±.±5±±.±5  
(±.±±2±±.±±2ꢀ  
T
S
HOW TO ORDER  
CP  
0603  
X
L
TR  
X
****  
Frequency  
Type  
Style  
Size  
Sub Type  
Termination  
Code  
Packaging Code  
0603  
TR = Tape and Reel  
(MHz)  
Directional Coupler  
L = LGA Sn90, Pb10  
N = LGA Sn100  
QUALITY INSPECTION  
TERMINALS (Top View)  
Finished parts are 100ꢀ tested for electrical parameters and  
visual characteristics. Each production lot is evaluated on a  
sample basis for:  
50 OHM  
OUT  
• Static Humidity: 85°C, 85ꢀ RH, 160 hours  
• Endurance: 125°C, IR, 4 hours  
TERMINATION  
Sn90Pb10 or Lead-Free Sn100 Nickel/Solder coating  
compatible with automatic soldering technologies: reflow,  
wave soldering, vapor phase and manual.  
COUPLING  
IN  
Recommended Pad Layout Dimensions  
mm (inches)  
ORIENTATION IN TAPE  
1.1±  
5±  
5±  
OUT  
IN  
OUT  
IN  
(±.±43ꢀ  
OHM  
OHM  
±.4±  
(±.±16ꢀ  
CP  
CP  
±.5±  
(±.±2±ꢀ  
1.75 (±.±69ꢀ  
*The recommended distance to the PCB Ground Plane is ±.254mm (±.±1±"ꢀ  
36  
Thin-Film Directional Couplers  
CP0603 High Directivity LGA Termination  
COUPLER TYPE SELECTION GRAPH  
Coupling vs. Frequency  
0
-5  
-10  
-15  
-20  
3
CP0603A  
CP0603A  
CP0603A  
CP0603A  
CP0603A  
CP0603A  
CP0603A  
CP0603A  
CP0603A  
CL  
HL  
AL  
DL  
BL  
ML  
EL  
FL  
****  
****  
****  
****  
****  
****  
****  
****  
****  
-25  
-30  
-35  
-40  
GL  
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
Frequency (GHz)  
Intermediate coupling factors are readily available.  
Please contact factory.  
37  
Thin-Film Directional Couplers  
CP0603 High Directivity LGA Type  
Coupler P/N CP0603AxxxxAL  
CP0603AxxxxALTR  
±0  
±0  
I. Loss  
Frequency Coupling I. Loss Return Directivity  
P/N  
Examples  
Application  
Band  
[MHz]  
[dB]  
max. Loss  
[dB]  
--11±0..±0  
--22±0..±0  
--44  
[dB]  
[dB]  
Coupling  
CP±6±3A±836AL 824 - 849  
CP±6±3A±881AL 869 - 894  
CP±6±3A±9±2AL 89± - 915  
CP±6±3A±947AL 935 - 96±  
CP±6±3A±897AL 88± - 915  
CP±6±3A±942AL 925 - 96±  
CP±6±3A1441AL 1429 - 1453  
CP±6±3A1747AL 171± - 1785  
CP±6±3A1842AL 18±5 - 188±  
CP±6±3A188±AL 185± - 191±  
CP±6±3A196±AL 193± - 199±  
CP±6±3A19±7AL 1895 - 192±  
CP±6±3A189±AL 188± - 19±±  
2±.±  
19.7  
19.4  
19.±  
19.4  
19.±  
15.5  
14.±  
13.5  
13.2  
13.±  
--88  
AMPS  
GSM  
28  
R. Loss  
27  
--1122  
--1166  
--33±0..±0  
--44±0..±0  
±.25  
28  
27  
24  
Isolation  
E-GSM  
PDC  
±.4±  
±.5±  
22  
--55±0..±0  
--66±0..±0  
--22±0  
--2244  
PCN  
22  
PCS  
±.55  
±.5±  
±.75  
21  
22  
2±  
±0..88  
11..66  
22..44  
33..22  
44..±0  
PHP  
DECT  
FFrreeqquueennccyy ((GGHHzz)  
13.2  
11.5  
Wireless LAN CP±6±3A2442AL 24±± - 2484  
3
Coupler P/N CP0603AxxxxBL  
CP0603AxxxxBLTR  
0
0
-10.0  
-20.0  
Frequency Coupling I. Loss Return Directivity  
I. Loss  
P/N  
Examples  
Application  
Band  
[dB]  
max. Loss  
[dB]  
[dB]  
-4  
[MHz]  
[dB]  
Coupling  
R. Loss  
CP±6±3A±836BL 824 - 849  
CP±6±3A±881BL 869 - 894  
CP±6±3A±9±2BL 89± - 915  
CP±6±3A±947BL 935 - 96±  
CP±6±3A±897BL 88± - 915  
CP±6±3A±942BL 925 - 96±  
CP±6±3A1441BL 1429 - 1453  
CP±6±3A1747BL 171± - 1785  
CP±6±3A1842BL 18±5 - 188±  
CP±6±3A188±BL 185± - 191±  
CP±6±3A196±BL 193± - 199±  
CP±6±3A19±7BL 1895 - 192±  
CP±6±3A189±BL 188± - 19±±  
23.±  
22.7  
22.5  
22.±  
22.5  
22.±  
18.5  
17.±  
16.4  
16.2  
16.±  
16.1  
16.2  
14.2  
AMPS  
GSM  
-8  
31  
±.2±  
29  
3±  
31  
3±  
27  
-12  
-16  
-30.0  
-40.0  
Isolation  
E-GSM  
PDC  
PCN  
-50.0  
-60.0  
-20  
-24  
25  
±.25  
±.35  
PCS  
24  
25  
23  
24  
0.8  
1.6  
2.4  
3.2  
4.0  
PHP  
DECT  
Frequency (GHz)  
Wireless LAN CP±6±3A2442BL 24±± - 2484  
Coupler P/N CP0603AxxxxCL  
CP0603AxxxxCLTR  
±
±
-1±.±  
-2±.±  
I. Loss  
Frequency Coupling I. Loss Return Directivity  
P/N  
Examples  
Application  
Band  
[dB]  
max. Loss  
[dB]  
[dB]  
-4.±  
-8.±  
-12.±  
-16.±  
[MHz]  
[dB]  
Coupling  
R. Loss  
CP±6±3A±836CL 824 - 849  
CP±6±3A±881CL 869 - 894  
CP±6±3A±9±2CL 89± - 915  
CP±6±3A±947CL 935 - 96±  
CP±6±3A±897CL 88± - 915  
CP±6±3A±942CL 925 - 96±  
CP±6±3A1441CL 1429 - 1453  
CP±6±3A1747CL 171± - 1785  
CP±6±3A1842CL 18±5 - 188±  
CP±6±3A188±CL 185± - 191±  
CP±6±3A196±CL 193± - 199±  
CP±6±3A19±7CL 1895 - 192±  
CP±6±3A189±CL 188± - 19±±  
15.2  
15.±  
14.7  
14.3  
14.7  
14.3  
11.±  
9.5  
AMPS  
GSM  
±.35  
23  
-3±.±  
-4±.±  
±.4±  
±.35  
±.4±  
±.7±  
±.8±  
22  
23  
22  
19  
18  
23  
Isolation  
E-GSM  
PDC  
-5±.±  
-6±.±  
-2±.±  
-24.±  
PCN  
9.±  
8.8  
8.5  
±.9±  
1.±±  
±.9±  
1.4±  
PCS  
17  
15  
21  
±.8  
1.6  
2.4  
3.2  
4.±  
PHP  
DECT  
Frequency (GHzꢀ  
8.8  
7.±  
Wireless LAN CP±6±3A2442CL 24±± - 2484  
Important: Couplers can be used at any frequency within the indicated range.  
38  
Thin-Film Directional Couplers  
CP0603 High Directivity LGA Type  
Coupler P/N CP0603AxxxxDL  
CP0603AxxxxDLTR  
±
±
Frequency Coupling I. Loss Return Directivity  
I. Loss  
P/N  
Examples  
Application  
Band  
[MHz]  
[dB]  
max. Loss  
[dB]  
-1±.±  
-2±.±  
-1.±  
-2.±  
-3.±  
-4.±  
[dB]  
[dB]  
Coupling  
R. Loss  
CP±6±3A±836DL 824 - 849  
CP±6±3A±881DL 869 - 894  
CP±6±3A±9±2DL 89± - 915  
CP±6±3A±947DL 935 - 96±  
CP±6±3A±897DL 88± - 915  
CP±6±3A±942DL 925 - 96±  
CP±6±3A1441DL 1429 - 1453  
CP±6±3A1747DL 171± - 1785  
CP±6±3A1842DL 18±5 - 188±  
CP±6±3A188±DL 185± - 191±  
CP±6±3A196±DL 193± - 199±  
CP±6±3A19±7DL 1895 - 192±  
CP±6±3A189±DL 188± - 19±±  
22.±  
21.8  
21.3  
21.±  
21.3  
21.±  
17.7  
16.±  
15.4  
15.2  
15.±  
31  
AMPS  
GSM  
±.25  
±.3±  
±.25  
±.3±  
3±  
3±  
-3±.±  
-4±.±  
E-GSM  
PDC  
Isolation  
27  
25  
PCN  
-5±.±  
-6±.±  
-5.±  
-6.±  
±.4±  
±.55  
PCS  
25  
±.8  
1.6  
2.4  
3.2  
4.±  
24  
22  
PHP  
DECT  
15.2  
13.3  
Frequency (GHzꢀ  
Wireless LAN CP±6±3A2442DL 24±± - 2484  
3
Coupler P/N CP0603AxxxxEL  
CP0603AxxxxELTR  
I. Loss  
±
±
-1±.±  
-2±.±  
Frequency Coupling I. Loss Return Directivity  
P/N  
Examples  
Application  
Band  
[dB]  
max. Loss  
[dB]  
[dB]  
-4.±  
-8.±  
-12.±  
-16.±  
[MHz]  
[dB]  
Coupling  
R. Loss  
CP±6±3A±836EL 824 - 849  
CP±6±3A±881EL 869 - 894  
CP±6±3A±9±2EL 89± - 915  
CP±6±3A±947EL 935 - 96±  
CP±6±3A±897EL 88± - 915  
CP±6±3A±942EL 925 - 96±  
CP±6±3A1441EL 1429 - 1453  
CP±6±3A1747EL 171± - 1785  
CP±6±3A1842EL 18±5 - 188±  
CP±6±3A188±EL 185± - 191±  
CP±6±3A196±EL 193± - 199±  
CP±6±3A19±7EL 1895 - 192±  
CP±6±3A189±EL 188± - 19±±  
25.8  
25.3  
25.±  
24.7  
26.±  
24.7  
22.±  
19.5  
19.±  
18.8  
18.5  
18.7  
18.8  
17.±  
AMPS  
GSM  
32  
-3±.±  
-4±.±  
±.2±  
±.25  
31  
32  
31  
28  
Isolation  
E-GSM  
PDC  
21  
-5±.±  
-6±.±  
-2±.±  
-24.±  
PCN  
PCS  
±.3±  
±.4±  
26  
24  
±.8  
1.6  
2.4  
3.2  
4.±  
4.8  
5.6  
6.4  
Frequency (GHzꢀ  
PHP  
DECT  
Wireless LAN CP±6±3A2442EL 24±± - 2484  
Coupler P/N CP0603AxxxxFL  
CP0603AxxxxFLTR  
±
±
-1±.±  
-2±.±  
I. Loss  
Frequency Coupling I. Loss Return Directivity  
P/N  
Examples  
Application  
Band  
[dB]  
max. Loss  
[dB]  
[dB]  
-4.±  
-8.±  
-12.±  
-16.±  
[MHz]  
[dB]  
Coupling  
CP±6±3A±836FL  
CP±6±3A±881FL  
CP±6±3A±9±2FL  
CP±6±3A±947FL  
CP±6±3A±897FL  
CP±6±3A±942FL  
CP±6±3A1441FL 1429 - 1453  
CP±6±3A1747FL 171± - 1785  
CP±6±3A1842FL 18±5 - 188±  
CP±6±3A188±FL 185± - 191±  
CP±6±3A196±FL 193± - 199±  
CP±6±3A19±7FL 1895 - 192±  
CP±6±3A189±FL 188± - 19±±  
824 - 849  
869 - 894  
89± - 915  
935 - 96±  
88± - 915  
925 - 96±  
31.2  
3±.8  
3±.5  
3±.2  
3±.5  
3±.2  
27.±  
25.±  
26.5  
24.3  
24.±  
AMPS  
GSM  
38  
R. Loss  
±.2±  
-3±.±  
-4±.±  
37  
Isolation  
E-GSM  
PDC  
33  
31  
12  
-5±.±  
-6±.±  
-2±.±  
-24.±  
PCN  
PCS  
±.25  
±.8  
1.6  
2.4  
3.2  
4.±  
4.8  
5.6  
6.4  
3±  
31  
3±  
Frequency (GHzꢀ  
PHP  
DECT  
24.2  
21.5  
Wireless LAN CP±6±3A2442FL 24±± - 2484  
Important: Couplers can be used at any frequency within the indicated range.  
39  
Thin-Film Directional Couplers  
CP0603 High Directivity LGA Type  
Coupler P/N CP0603AxxxxGL  
CP0603AxxxxGLTR  
±
±
Frequency Coupling I. Loss Return Directivity  
I. Loss  
P/N  
Examples  
Application  
Band  
[dB]  
max. Loss  
[dB]  
[dB]  
-1±.±  
-2±.±  
-4.±  
-8.±  
-12.±  
-16.±  
[MHz]  
[dB]  
CP±6±3A±836GL 824 - 849  
CP±6±3A±881GL 869 - 894  
CP±6±3A±9±2GL 89± - 915  
CP±6±3A±947GL 935 - 96±  
CP±6±3A±897GL 88± - 915  
CP±6±3A±942GL 925 - 96±  
CP±6±3A1441GL 1429 - 1453  
CP±6±3A1747GL 171± - 1785  
CP±6±3A1842GL 18±5 - 188±  
CP±6±3A188±GL 185± - 191±  
CP±6±3A196±GL 193± - 199±  
CP±6±3A19±7GL 1895 - 192±  
CP±6±3A189±GL 188± - 19±±  
34.2  
33.8  
33.6  
33.2  
33.6  
33.2  
3±.±  
28.5  
28.±  
27.7  
27.5  
27.6  
27.7  
25.5  
AMPS  
GSM  
39  
Coupling  
±.2±  
38  
39  
38  
34  
-3±.±  
-4±.±  
R. Loss  
E-GSM  
PDC  
13  
Isolation  
PCN  
-5±.±  
-6±.±  
-2±.±  
-24.±  
32  
PCS  
±.25  
31  
32  
31  
±.8  
1.6  
2.4  
3.2  
4.±  
4.8  
5.6  
6.4  
PHP  
DECT  
Frequency (GHzꢀ  
Wireless LAN CP±6±3A2442GL 24±± - 2484  
3
Coupler P/N CP0603AxxxxHL  
CP0603AxxxxHLTR  
±
±
-1±.±  
-2±.±  
Frequency Coupling I. Loss Return Directivity  
I. Loss  
P/N  
Examples  
Application  
Band  
[dB]  
max. Loss  
[dB]  
[dB]  
-4.±  
-8.±  
-12.±  
-16.±  
[MHz]  
[dB]  
26  
CP±6±3A±836HL 824 - 849  
CP±6±3A±881HL 869 - 894  
CP±6±3A±9±2HL 89± - 915  
CP±6±3A±947HL 935 - 96±  
CP±6±3A±897HL 88± - 915  
CP±6±3A±942HL 925 - 96±  
CP±6±3A1441HL 1429 - 1453  
CP±6±3A1747HL 171± - 1785  
CP±6±3A1842HL 18±5 - 188±  
CP±6±3A188±HL 185± - 191±  
CP±6±3A196±HL 193± - 199±  
CP±6±3A19±7HL 1895 - 192±  
CP±6±3A189±HL 188± - 19±±  
17.3  
17.±  
16.7  
16.3  
17.±  
16.3  
13.±  
11.4  
11.±  
1±.8  
1±.5  
1±.7  
1±.8  
8.8  
AMPS  
GSM  
Coupling  
R. Loss  
±.3±  
25  
26  
-3±.±  
-4±.±  
±.35  
±.55  
E-GSM  
PDC  
Isolation  
22  
2±  
PCN  
-5±.±  
-6±.±  
-2±.±  
-24.±  
PCS  
24  
±.75  
1.±±  
19  
17  
PHP  
DECT  
±.8  
1.6  
2.4  
3.2  
4.±  
Frequency (GHzꢀ  
Wireless LAN CP±6±3A2442HL 24±± - 2484  
Coupler P/N CP0603AxxxxML  
CP0603AxxxxMLTR  
±
±
-1±.±  
-2±.±  
Frequency Coupling I. Loss Return Directivity  
I. Loss  
P/N  
Examples  
Application  
Band  
[dB]  
max. Loss  
[dB]  
[dB]  
-4.±  
-8.±  
-12.±  
-16.±  
[MHz]  
[dB]  
33  
CP±6±3A±836ML 824 - 849  
CP±6±3A±881ML 869 - 894  
CP±6±3A±9±2ML 89± - 915  
CP±6±3A±947ML 935 - 96±  
CP±6±3A±897ML 88± - 915  
CP±6±3A±942ML 925 - 96±  
CP±6±3A1441ML 1429 - 1453  
CP±6±3A1747ML 171± - 1785  
CP±6±3A1842ML 18±5 - 188±  
CP±6±3A188±ML 185± - 191±  
CP±6±3A196±ML 193± - 199±  
CP±6±3A19±7ML 1895 - 192±  
CP±6±3A189±ML 188± - 19±±  
24.2  
23.8  
23.4  
23.2  
23.4  
23.2  
2±.±  
18.4  
18.±  
17.8  
17.5  
17.7  
17.8  
15.6  
AMPS  
GSM  
Coupling  
R. Loss  
±.2±  
32  
23  
-3±.±  
-4±.±  
E-GSM  
PDC  
Isolation  
28  
27  
PCN  
-5±.±  
-6±.±  
-2±.±  
-24.±  
±.25  
±.35  
PCS  
2±  
26  
24  
PHP  
DECT  
±.8  
1.6  
2.4  
3.2  
4.±  
Frequency (GHzꢀ  
Wireless LAN CP±6±3A2442ML 24±± - 2484  
Important: Couplers can be used at any frequency within the indicated range.  
4±  
Thin-Film Directional Couplers  
CP0402 / CP0603 High Directivity Couplers Test Jigs  
GENERAL DESCRIPTION  
These jigs are designed for testing the CP0402 and CP0603  
High Directivity Couplers using a Vector Network Analyzer.  
The connectors are SMA type (female), ‘Johnson Components  
Inc.’ Product P/N: 142-0701-841.  
They consist of a dielectric substrate, having 50microstrips  
as conducting lines and a bottom ground plane located at a  
distance of 0.254mm (0.010") from the microstrips.  
Both a measurement jig and a calibration jig are provided.  
The calibration jig is designed for a full 2-port calibration, and  
consists of an open line, short line and through line. LOAD  
calibration can be done by a 50SMA termination.  
The substrate used is Neltecs NH9338ST0254C1BC.  
MEASUREMENT PROCEDURE  
When measuring a component, it can be either soldered or  
pressed using a non-metallic stick until all four ports touch  
the appropriate pads. Set the VNA to the relevant frequency  
band. Connect the VNA using a 10dB attenuator on the jig  
terminal connected to port 2. Follow the VNAs instruction  
manual and use the calibration jig to perform a full 2-Port  
calibration in the required bandwidths.  
Place the coupler on the measurement jig as follows:  
3
Input (Coupler) Connector 1 (Jig)  
Output (Coupler) Connector 2 (Jig)  
Termination (Coupler) Connector 3 (Jig)  
Coupling (Coupler) Connector 4 (Jig)  
To measure I. Loss connect:  
Connector 1 (Jig) Port 1 (VNA) Connector 3 (Jig) 50Ω  
Connector 2 (Jig) Port 2 (VNA) Connector 4 (Jig) 50Ω  
To measure R. Loss and Coupling connect:  
Connector 1 (Jig) Port 1 (VNA) Connector 3 (Jig) 50Ω  
Connector 2 (Jig) 50Ω  
Connector 4 (Jig) Port 2 (VNA)  
To measure Isolation connect:  
Connector 1 (Jig) 50Ω  
Connector 3 (Jig) 50Ω  
Connector 2 (Jig) Port 1 (VNA) Connector 4 (Jig) Port 2 (VNA)  
Measurement Jig  
Calibration Jig  
Short Line  
to GND.  
Connector 1  
Connector  
Johnson  
P/N 142-±7±1-841  
Connector 2  
OPEN  
TH  
Load &  
Open  
Line  
Connector 4  
Through  
Load &  
Through  
Connector 3  
41  
Thin-Film Directional Couplers  
CP0603 SMD Type  
GENERAL DESCRIPTION  
ITF (Integrated Thin-Film) TECHNOLOGY  
DIMENSIONS:  
millimeters (inches)  
B
W
The ITF SMD Coupler is based on thin-film multilayer technology.  
The technology provides a miniature part with excellent high frequency  
performance and rugged construction for reliable automatic assembly.  
L
T
The ITF Coupler is offered in a variety of frequency bands compatible with  
various types of high frequency wireless systems.  
B1  
A
Top View  
Bottom View  
FEATURES  
APPLICATIONS  
0603  
1.6±±.1  
(±.±63±±.±±4ꢀ  
±.84±±.1  
(±.±33±±.±±4ꢀ  
±.6±±±.1  
(±.±28±±.±±4ꢀ  
±.35±±.15  
(±.±14±±.±±6ꢀ  
• Miniature Size: 0603  
• Mobile Communications  
• Satellite TV Receivers  
• GPS  
L
W
T
• Frequency Range: 800MHz - 3GHz  
• Characteristic Impedance: 50Ω  
• Operating / Storage Temp.: -40ºC to +85ºC  
• Power Rating: 3W Continuous  
• Low Profile  
• Vehicle Location Systems  
• Wireless LANs  
A
• Rugged Construction  
3
B
±.175±±.1  
(±.±±7±±.±±4ꢀ  
Taped and Reeled  
B1  
±.±±+±.1/±-±.±  
(±.±±+±.±±4/-±.±ꢀ  
HOW TO ORDER  
CP  
0603  
X
W
TR  
X
****  
Frequency  
Type  
Style  
Size  
0603  
Sub Type  
Termination  
Code  
Packaging Code  
TR = Tape and Reel  
MHz  
Directional Coupler  
W = Sn90, Pb10  
S = Sn100  
QUALITY INSPECTION  
TERMINALS (Top View)  
Finished parts are 100ꢀ tested for electrical parameters and  
visual characteristics. Each production lot is evaluated on a  
sample basis for:  
OUT  
50 OHM  
• Static Humidity: 85°C, 85ꢀ RH, 160 hours  
• Endurance: 125°C, IR, 4 hours  
TERMINATION  
Nickel/Solder coating compatible with automatic soldering  
technologies: reflow, wave soldering, vapor phase and  
manual.  
IN  
COUPLING  
Recommended Pad Layout Dimensions  
mm (inches)  
1.85  
(±.±73ꢀ  
±.45  
(±.±18ꢀ  
Orientation in tape  
±.28  
(±.±11ꢀ  
1.±8  
(±.±43ꢀ  
42  
Thin-Film Directional Couplers  
CP0603 SMD Type  
Coupler P/N CP0603A  
AW  
P/N CP0603A AW  
****  
****  
0
-10  
-20  
-30  
-40  
0
P/N  
Examples  
Frequency  
Band [MHz]  
824 - 849  
869 - 894  
89± - 915  
935 - 96±  
88± - 915  
925 - 96±  
Coupling I. Loss VSWR  
I. Loss  
Application  
AMPS  
[dB]  
18.5±1  
18.5±1  
18±1  
17.5±1  
18±1  
17.5±1  
14±1  
12.5±1  
12±1  
max  
max  
-2  
-4  
-6  
-8  
CP±6±3A±836AW  
CP±6±3A±881AW  
CP±6±3A±9±2AW  
CP±6±3A±947AW  
CP±6±3A±897AW  
CP±6±3A±942AW  
Coupling  
Isolation  
±.25  
GSM  
Return Loss  
E-GSM  
PDC  
CP±6±3A1441AW 1429 - 1453  
CP±6±3A1747AW 171± - 1785  
CP±6±3A1842AW 18±5 - 188±  
CP±6±3A188±AW 185± - 191±  
CP±6±3A196±AW 193± - 199±  
CP±6±3A19±7AW 1895 - 192±  
CP±6±3A189±AW 188± - 19±±  
±.4  
±.6  
-50  
-60  
-10  
-12  
1.2  
PCN  
12±1  
11.5±1  
12±1  
PCS  
0.5  
1.0  
1.5  
2.0  
Frequency (GHz)  
2.5  
3.0  
3.5  
±.65  
±.6  
PHP  
DECT  
12±1  
Wireless LAN CP±6±3A2442AW 24±± - 2484  
1±±1  
±.85  
Coupler P/N CP0603A  
BW  
CP0603A BW  
****  
****  
0
0
P/N  
Examples  
Frequency  
Band [MHz]  
824 - 849  
869 - 894  
89± - 915  
935 - 96±  
88± - 915  
925 - 96±  
Coupling I. Loss VSWR  
I. Loss  
Application  
AMPS  
[dB]  
16±1  
15.5±1  
15.5±1  
15±1  
15.5±1  
15±1  
11.5±1  
1±±1  
9.5±1  
9±1  
max  
max  
-2  
-4  
-6  
-8  
-10  
-20  
-30  
-40  
-50  
-60  
Coupling  
CP±6±3A±836BW  
CP±6±3A±881BW  
CP±6±3A±9±2BW  
CP±6±3A±947BW  
CP±6±3A±897BW  
CP±6±3A±942BW  
Return Loss  
Isolation  
±.25  
1.2  
GSM  
3
E-GSM  
PDC  
CP±6±3A1441BW 1429 - 1453  
CP±6±3A1747BW 171± - 1785  
CP±6±3A1842BW 18±5 - 188±  
CP±6±3A188±BW 185± - 191±  
CP±6±3A196±BW 193± - 199±  
CP±6±3A19±7BW 1895 - 192±  
CP±6±3A189±BW 188± - 19±±  
±.55  
1.3  
1.4  
-10  
-12  
PCN  
PCS  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
9±1  
9±1  
9±1  
7.5±1  
±.8  
1.1  
PHP  
DECT  
Frequency (GHz)  
Wireless LAN CP±6±3A2442BW 24±± - 2484  
Coupler P/N CP0603A  
CW  
CP0603A CW  
****  
****  
0
0
P/N  
Examples  
Frequency  
Band [MHz]  
824 - 849  
869 - 894  
89± - 915  
935 - 96±  
88± - 915  
925 - 96±  
Coupling I. Loss VSWR  
[dB]  
21±1  
I. Loss  
Application  
AMPS  
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-9  
max  
max  
-10  
CP±6±3A±836CW  
CP±6±3A±881CW  
CP±6±3A±9±2CW  
CP±6±3A±947CW  
CP±6±3A±897CW  
CP±6±3A±942CW  
Coupling  
Isolation  
-20  
-30  
-40  
2±.5±1  
2±.5±1  
2±±1  
2±.5±1  
2±±1  
16.5±1  
15±1  
14.5±1  
14.5±1  
14±1  
±.25  
GSM  
Return Loss  
E-GSM  
PDC  
-50  
-60  
-70  
CP±6±3A1441CW 1429 - 1453  
CP±6±3A1747CW 171± - 1785  
CP±6±3A1842CW 18±5 - 188±  
CP±6±3A188±CW 185± - 191±  
CP±6±3A196±CW 193± - 199±  
CP±6±3A19±7CW 1895 - 192±  
CP±6±3A189±CW 188± - 19±±  
±.4±  
1.2  
-10  
-11  
-12  
PCN  
PCS  
±.5  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
PHP  
DECT  
14.5±1  
14.5±1  
12.5±1  
Frequency (GHz)  
Wireless LAN CP±6±3A2442CW 24±± - 2484  
±.65  
Coupler P/N CP0603A  
DW  
CP0603A  
DW  
****  
****  
0
-10  
-20  
0
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-9  
-10  
-11  
-12  
P/N  
Examples  
Frequency  
Band [MHz]  
824 - 849  
869 - 894  
89± - 915  
935 - 96±  
88± - 915  
925 - 96±  
Coupling I. Loss VSWR  
Application  
I. Loss  
[dB]  
15.±±1  
14.5±1  
14.5±1  
14±1  
14.5±1  
14±1  
1±.5±1  
9±1  
8.5±1  
8.5±1  
8±1  
8.5±1  
8.5±1  
6.5±1  
max  
max  
AMPS  
CP±6±3A±836DW  
CP±6±3A±881DW  
CP±6±3A±9±2DW  
CP±6±3A±947DW  
CP±6±3A±897DW  
CP±6±3A±942DW  
Coupling Return Loss  
Isolation  
±.4±  
1.2  
GSM  
-30  
-40  
-50  
-60  
E-GSM  
PDC  
CP±6±3A1441DW 1429 - 1453  
CP±6±3A1747DW 171± - 1785  
CP±6±3A1842DW 18±5 - 188±  
CP±6±3A188±DW 185± - 191±  
CP±6±3A196±DW 193± - 199±  
CP±6±3A19±7DW 1895 - 192±  
CP±6±3A189±DW 188± - 19±±  
±.7  
±.9  
1.±  
1.3  
1.5  
PCN  
PCS  
0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5  
PHP  
DECT  
Frequency (GHz)  
Wireless LAN CP±6±3A2442DW 24±± - 2484  
1.5  
Important: Couplers can be used at any frequency within the indicated range.  
43  
Thin-Film Directional Couplers  
CP0603 SMD Type  
Coupler P/N CP0603B  
AW  
CP0603B  
AW  
****  
****  
0
P/N  
Frequency  
Band [MHz]  
824 - 849  
869 - 894  
89± - 915  
935 - 96±  
88± - 915  
925 - 96±  
Coupling I. Loss VSWR  
I. Loss  
-1  
-3  
-5  
-7  
Application  
AMPS  
Examples  
[dB]  
24.5±1  
24±1  
24±1  
23.5±1  
24±1  
23.5±1  
2±±1  
18±1  
17.5±1  
17.5±1  
17.5±1  
17.5±1  
17.5±1  
15.5±1  
max  
max  
-10  
-20  
Coupling  
CP±6±3B±836AW  
CP±6±3B±881AW  
CP±6±3B±9±2AW  
CP±6±3B±947AW  
CP±6±3B±897AW  
CP±6±3B±942AW  
Isolation  
±.2  
GSM  
-30  
-40  
-50  
-60  
Return Loss  
E-GSM  
PDC  
-9  
CP±6±3B1441AW 1429 - 1453  
CP±6±3B1747AW 171± - 1785  
CP±6±3B1842AW 18±5 - 188±  
CP±6±3B188±AW 185± - 191±  
CP±6±3B196±AW 193± - 199±  
CP±6±3B19±7AW 1895 - 192±  
CP±6±3B189±AW 188± - 19±±  
1.2  
±.25  
-11  
PCN  
-13  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
PCS  
±.3  
Frequency (GHz)  
PHP  
DECT  
Wireless LAN CP±6±3B2442AW 24±± - 2484  
±.45  
Coupler P/N CP0603B  
BW  
CP0603B  
I. Loss  
BW  
****  
****  
0
-5  
0
P/N  
Examples  
Frequency  
Band [MHz]  
824 - 849  
869 - 894  
89± - 915  
935 - 96±  
88± - 915  
925 - 96±  
Coupling I. Loss VSWR  
Application  
AMPS  
[dB]  
25.5±1  
25±1  
25±1  
24.5±1  
25±1  
24.5±1  
21±1  
19±1  
max  
max  
-10  
-15  
-20  
-25  
-2  
CP±6±3B±836BW  
CP±6±3B±881BW  
CP±6±3B±9±2BW  
CP±6±3B±947BW  
CP±6±3B±897BW  
CP±6±3B±942BW  
Coupling  
3
-4  
-6  
GSM  
±.2  
Return Loss  
-30  
E-GSM  
PDC  
-35  
-40  
CP±6±3B1441BW 1429 - 1453  
CP±6±3B1747BW 171± - 1785  
CP±6±3B1842BW 18±5 - 188±  
CP±6±3B188±BW 185± - 191±  
CP±6±3B196±BW 193± - 199±  
CP±6±3B19±7BW 1895 - 192±  
CP±6±3B189±BW 188± - 19±±  
1.2  
Isolation  
-8  
PCN  
19±1  
-45  
-50  
0.5  
18.5±1  
18.5±1  
18.5±1  
18.5±1  
16.5±1  
±.25  
±.35  
-10  
4.0  
PCS  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
PHP  
DECT  
Frequency (GHz)  
Wireless LAN CP±6±3B2442BW 24±± - 2484  
Coupler P/N CP0603B  
CW  
CP0603B  
CW  
****  
****  
0
0
-5  
-10  
-15  
P/N  
Examples  
Frequency  
Band [MHz]  
824 - 849  
869 - 894  
89± - 915  
935 - 96±  
88± - 915  
925 - 96±  
Coupling I. Loss VSWR  
I. Loss  
Application  
AMPS  
[dB]  
26.5±1  
26±1  
26±1  
25.5±1  
26±1  
25.5±1  
22±1  
2±.5±1  
2±±1  
2±±1  
19.5±1  
2±±1  
max  
max  
-2  
-4  
-6  
CP±6±3B±836CW  
CP±6±3B±881CW  
CP±6±3B±9±2CW  
CP±6±3B±947CW  
CP±6±3B±897CW  
CP±6±3B±942CW  
Coupling  
-20  
-25  
-30  
-35  
-40  
-45  
-50  
GSM  
±.2  
E-GSM  
PDC  
Return Loss  
Isolation  
CP±6±3B1441CW 1429 - 1453  
CP±6±3B1747CW 171± - 1785  
CP±6±3B1842CW 18±5 - 188±  
CP±6±3B188±CW 185± - 191±  
CP±6±3B196±CW 193± - 199±  
CP±6±3B19±7CW 1895 - 192±  
CP±6±3B189±CW 188± - 19±±  
1.2  
-8  
PCN  
-10  
4.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
PCS  
±.25  
±.35  
Frequency (GHz)  
PHP  
DECT  
2±±1  
18±1  
Wireless LAN CP±6±3B2442CW 24±± - 2484  
1.3  
Important: Couplers can be used at any frequency within the indicated range.  
44  
Thin-Film Directional Couplers  
CP0603 SMD Type – High Directivity  
Coupler P/N CP0603D  
AW  
CP0603D AW  
****  
****  
0
0
-5  
Frequency Coupling I. Loss Return Directivity  
I. Loss  
P/N  
Examples  
-2  
Application  
Band  
[dB]  
max. Loss  
[dB]  
[dB]  
-4  
[MHz]  
[dB]  
23  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
Coupling  
Isolation  
CP±6±3D±836AW 824 - 849  
CP±6±3D±881AW 869 - 894  
CP±6±3D±9±2AW 89± - 915  
CP±6±3D±947AW 935 - 96±  
CP±6±3D±897AW 88± - 915  
CP±6±3D±942AW 925 - 96±  
CP±6±3D1441AW 1429 - 1453  
CP±6±3D1747AW 171± - 1785  
CP±6±3D1842AW 18±5 - 188±  
CP±6±3D188±AW 185± - 191±  
CP±6±3D196±AW 193± - 199±  
CP±6±3D19±7AW 1895 - 192±  
CP±6±3D189±AW 188± - 19±±  
13.5±  
13.±±  
-6  
AMPS  
GSM  
-8  
-10  
-12  
-14  
-16  
12.5±  
13.±±  
12.5±  
9.±±  
±.5±  
1.±±  
22  
21  
E-GSM  
PDC  
Return Loss  
18  
17  
19  
18  
8.±±  
PCN  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
2.2  
2.4  
7.5±  
Frequency (GHz)  
PCS  
1.4±  
2.±±  
17  
15  
PHP  
DECT  
7.±±  
5.5±  
16  
15  
Wireless LAN CP±6±3D2442AW 24±± - 2484  
3
Coupler P/N CP0603D  
BW  
CP0603D  
BW  
****  
****  
0
0
-5  
-10  
-15  
Frequency Coupling I. Loss Return Directivity  
I. Loss  
P/N  
Examples  
-1  
-2  
-3  
-4  
Application  
Band  
[dB]  
max. Loss  
[dB]  
[dB]  
[MHz]  
[dB]  
Coupling  
CP±6±3D±836BW 824 - 849  
CP±6±3D±881BW 869 - 894  
CP±6±3D±9±2BW 89± - 915  
CP±6±3D±947BW 935 - 96±  
CP±6±3D±897BW 88± - 915  
CP±6±3D±942BW 925 - 96±  
2±.±±  
19.5±  
AMPS  
GSM  
36  
-20  
-25  
-30  
-35  
-40  
-45  
-5  
-6  
-7  
-8  
-9  
±.25  
35  
Return Loss  
Isolation  
19.±±  
19.5±  
19.±±  
36  
35  
3±  
28  
E-GSM  
PDC  
19  
CP±6±3D1441BW 1429 - 1453 15.5±  
CP±6±3D1747BW 171± - 1785 14.±±  
CP±6±3D1842BW 18±5 - 188±  
CP±6±3D188±BW 185± - 191± 13.5±  
CP±6±3D196±BW 193± - 199±  
±.4±  
±.5±  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
2.2  
2.4  
PCN  
Frequency (GHz)  
PCS  
±.55  
±.7±  
27  
24  
PHP  
DECT  
CP±6±3D19±7BW 1895 - 192±  
CP±6±3D189±BW 188± - 19±±  
13.±±  
Wireless LAN CP±6±3D2442BW 24±± - 2484 11.±±  
Important: Couplers can be used at any frequency within the indicated range.  
45  
Thin-Film Directional Couplers  
CP0805 Type  
GENERAL DESCRIPTION  
ITF (Integrated Thin-Film) TECHNOLOGY  
DIMENSIONS:  
(Top View)  
millimeters (inches)  
The ITF SMD Coupler is based on thin-film multilayer technology.  
The technology provides a miniature part with excellent high frequency  
performance and rugged construction for reliable automatic assembly.  
W
B
L
The ITF Coupler is offered in a variety of frequency bands compatible with  
various types of high frequency wireless systems.  
T
FEATURES  
APPLICATIONS  
• Small Size: 0805  
• Mobile Communications  
• Satellite TV Receivers  
• GPS  
A
• Frequency Range: 800MHz - 3GHz  
• Characteristic Impedance: 50Ω  
0805  
• Operating / Storage Temp.:  
• Vehicle Location Systems  
• Wireless LANs  
L
W
T
2.±3±±.1 (±.±8±±±.±±4ꢀ  
1.55±±.1 (±.±61±±.±±4ꢀ  
±.98±±.1 (±.±39±±.±±4ꢀ  
±.56±±.25 (±.±22±±.±1±ꢀ  
±.35±±.15 (±.±14±±.±±6ꢀ  
-40°C to +85°C  
• Power Rating: 3W Continuous  
• Low Profile  
• Rugged Construction  
Taped and Reeled  
A
B
3
HOW TO ORDER  
CP  
0805  
0902  
A
W
TR  
A
Style  
Directional Coupler  
Size  
0805  
Frequency  
Sub Type  
(see layout  
sub-types)  
Termination  
Code  
W = Nickel/Solder  
(Sn/Pb)  
Packaging Code  
TR = Tape and Reel  
Layout Type  
(see layout types)  
MHz  
QUALITY INSPECTION  
Finished parts are 100ꢀ tested for electrical parameters and  
visual characteristics. Each production lot is evaluated on a  
sample basis for:  
Recommended Pad Layout Dimensions mm (inches)  
2.33  
(0.092)  
0.60  
• Static Humidity: 85°C, 85ꢀ RH, 160 hours  
• Endurance: 125°C, IR, 4 hours  
(0.024)  
TERMINATION  
Nickel/Solder coating (Sn, Pb) compatible with automatic  
soldering technologies: reflow, wave soldering, vapor phase  
and manual.  
2.25  
(0.089)  
0.65  
(0.026)  
NOTE: Components must be mounted on the board with the white  
(Alumina) side DOWN.  
46  
Thin-Film Directional Couplers  
CP0805 Layout Types  
LAYOUT  
LAYOUT  
5± OHM  
(External  
Resistorꢀ  
COUP  
Port  
5± OHM  
(External  
Resistorꢀ  
COUP  
Port  
RF OUT  
Port  
RF IN  
Port  
RF IN  
Port  
RF OUT  
Port  
Type: A  
Sub-Type: A  
Type: A  
Sub-Type: B  
0
0
0
0
I. Loss  
I. Loss  
-5  
-1  
-2  
-3  
-4  
-1  
-5  
-10  
-15  
-20  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
Coupling  
Isolation  
R. Loss  
Coupling  
R. Loss  
-5  
-6  
-7  
-8  
-9  
-10  
-25  
-30  
-35  
-40  
Isolation  
3
-45  
-50  
0.60  
-45  
-50  
0.60  
0.80  
1.00  
1.20  
1.40  
1.60  
1.80  
2.00  
0.80  
1.00  
1.20  
1.40  
1.60  
1.80  
2.00  
Frequency (GHz)  
Frequency (GHz)  
P/N  
Examples  
Frequency  
Band [MHz]  
Coupling I. Loss VSWR  
Application  
AMPS  
P/N  
Examples  
Frequency  
Band [MHz]  
Coupling I. Loss VSWR  
[dB]  
max  
max  
Application  
AMPS  
[dB]  
16.5±1  
16±1  
max  
max  
CP±8±5A±836BW  
CP±8±5A±881BW  
CP±8±5A±9±2BW  
CP±8±5A±947BW  
CP±8±5A±897BW  
CP±8±5A±942BW  
CP±8±5A1441BW 1429 - 1453  
CP±8±5A1747BW 171± - 1785  
CP±8±5A1842BW 18±5 - 188±  
CP±8±5A188±BW 185± - 191±  
CP±8±5A196±BW 193± - 199±  
CP±8±5A19±7BW 1895 - 192±  
CP±8±5A189±BW 188± - 19±±  
824 - 849  
869 - 894  
89± - 915  
935 - 96±  
88± - 915  
925 - 96±  
19±1  
18.5±1  
18±1  
CP±8±5A±836AW  
CP±8±5A±881AW  
CP±8±5A±9±2AW  
CP±8±5A±947AW  
CP±8±5A±897AW  
CP±8±5A±942AW  
CP±8±5A1441AW 1429 - 1453  
CP±8±5A1747AW 171± - 1785  
CP±8±5A1842AW 18±5 - 188±  
CP±8±5A188±AW 185± - 191±  
CP±8±5A196±AW 193± - 199±  
CP±8±5A19±7AW 1895 - 192±  
CP±8±5A189±AW 188± - 19±±  
824 - 849  
869 - 894  
89± - 915  
935 - 96±  
88± - 915  
925 - 96±  
±.25  
1.2  
±.25  
GSM  
16±1  
15.5±1  
16±1  
15.5±1  
12±1  
1±.5±1  
1±±1  
9.5±1  
9.5±1  
9.5±1  
9.5±1  
18±1  
GSM  
1.2  
1.3  
1.4  
18.5±1  
18±1  
14.5±1  
12.5±1  
12.5±1  
12±1  
E-GSM  
PDC  
E-GSM  
PDC  
±.35  
±.5  
±.5  
±.7  
±.8  
PCN  
PCN  
±.6  
±.7  
±.6  
PCS  
11.5±1  
12±1  
1.4  
PCS  
PHP  
DECT  
PHP  
DECT  
12±1  
1±±1  
Wireless LAN CP±8±5A2442BW 24±± - 2484  
±.9  
LAYOUT  
5± OHM  
COUP  
Type: A  
Sub-Type: C  
IN  
OUT  
0
I. Loss  
-5  
P/N  
Examples  
Frequency  
Band [MHz]  
824 - 849  
869 - 894  
89± - 915  
935 - 96±  
88± - 915  
925 - 96±  
Coupling I. Loss VSWR  
-10  
-15  
-20  
Application  
AMPS  
Coupling  
Isolation  
[dB]  
14±1  
13.5±1  
13.5±1  
13±1  
13.5±1  
13±1  
9.5±1  
8±1  
max  
max  
CP±8±5A±836CW  
CP±8±5A±881CW  
CP±8±5A±9±2CW  
CP±8±5A±947CW  
CP±8±5A±897CW  
CP±8±5A±942CW  
CP±8±5A1441CW 1429 - 1453  
CP±8±5A1747CW 171± - 1785  
CP±8±5A1842CW 18±5 - 188±  
CP±8±5A188±CW 185± - 191±  
Cp±8±5A196±CW 193± - 199±  
CP±8±5A19±7CW 1895 - 192±  
CP±8±5A189±CW 188± - 19±±  
±.5  
-25  
-30  
GSM  
R. Loss  
1.4  
1.8  
2.2  
E-GSM  
PDC  
-35  
-40  
1.15  
1.6  
-45  
-50  
PCN  
8±1  
7.5±1  
7.5±1  
7.5±1  
7.5±1  
6±1  
1.75  
0.60 0.80 1.00 1.20 1.40 1.60 1.80  
2.00 2.20 2.40  
PCS  
Frequency (GHz)  
PHP  
DECT  
Wireless LAN CP±8±5A2442CW 24±± - 2484  
2.5  
Important: Couplers can be used at any frequency within the indicated range.  
47  
Thin-Film Directional Couplers  
CP0805 Layout Types  
LAYOUT  
LAYOUT  
5± OHM  
COUP  
5± OHM  
COUP  
IN  
OUT  
IN  
OUT  
Type: A  
Sub-Type: D  
Type: A  
Sub-Type: E  
0
0
-5  
I. Loss  
I. Loss  
-5  
-10  
-15  
-20  
Coupling  
Isolation  
Coupling  
-10  
-15  
-20  
-25  
-30  
R. Loss  
Isolation  
R. Loss  
-35  
-40  
-25  
-30  
3
-45  
-50  
0.50  
0.75  
1.00  
1.25  
1.50  
1.75  
2.00  
0.60 0.80 1.00 1.20 1.40 1.60 1.80  
2.00 2.20 2.40  
Frequency (GHz)  
Frequency (GHz)  
P/N  
Examples  
Frequency  
Band [MHz]  
824 - 849  
869 - 894  
89± - 915  
935 - 96±  
88± - 915  
925 - 96±  
Coupling I. Loss VSWR  
P/N  
Examples  
Frequency  
Coupling I. Loss VSWR  
Application  
AMPS  
Application  
AMPS  
[dB]  
13.±±1  
12.5±1  
12.5±1  
12±1  
12.5±1  
12±1  
8.5±1  
7±1  
7±1  
7±1  
6.5±1  
6.5±1  
7±1  
max  
max  
Band [MHz]  
824 - 849  
869 - 894  
89± - 915  
935 - 96±  
88± - 915  
925 - 96±  
[dB]  
11±1  
1±.5±1  
1±.5±1  
1±±1  
1±.5±1  
1±±1  
7±1  
max  
max  
CP±8±5A±836DW  
CP±8±5A±881DW  
CP±8±5A±9±2DW  
CP±8±5A±947DW  
CP±8±5A±897DW  
CP±8±5A±942DW  
CP±8±5A1441DW 1429 - 1453  
CP±8±5A1747DW 171± - 1785  
CP±8±5A1842DW 18±5 - 188±  
CP±8±5A188±DW 185± - 191±  
Cp±8±5A196±DW 193± - 199±  
CP±8±5A19±7DW 1895 - 192±  
CP±8±5A189±DW 188± - 19±±  
CP±8±5A±836EW  
CP±8±5A±881EW  
CP±8±5A±9±2EW  
CP±8±5A±947EW  
CP±8±5A±897EW  
CP±8±5A±942EW  
CP±8±5A1441EW 1429 - 1453  
CP±8±5A1747EW 171± - 1785  
CP±8±5A1842EW 18±5 - 188±  
CP±8±5A188±EW 185± - 191±  
Cp±8±5A196±EW 193± - 199±  
CP±8±5A19±7EW 1895 - 192±  
CP±8±5A189±EW 188± - 19±±  
±.5  
1.4  
±.85  
1.4  
GSM  
GSM  
E-GSM  
PDC  
E-GSM  
PDC  
1.25  
1.85  
2.15  
1.8  
2.1  
1.8  
2.7  
1.8  
2.2  
5.5±1  
5.5±1  
5±1  
PCN  
PCN  
PCS  
PCS  
5±1  
5±1  
5±1  
4±1  
PHP  
DECT  
PHP  
DECT  
3.15  
4.2  
2.4  
1.85  
2.4  
1.8  
2.1  
Wireless LAN CP±8±5A2442DW 24±± - 2484  
5.5±1  
Wireless LAN CP±8±5A2442EW 24±± - 2484  
LAYOUT  
RF IN  
Port  
COUP Port  
Type: B  
Sub-Type: A  
0
0
I. Loss  
-5  
-1  
-2  
RF OUT  
Port  
-10  
Coupling  
5± OHM (External Resistorꢀ  
Frequency Coupling I. Loss VSWR  
-15  
-3  
-4  
-5  
-6  
-7  
-8  
-20  
P/N  
R. Loss  
Application  
AMPS  
-25  
Examples  
Band [MHz]  
824 - 849  
869 - 894  
89± - 915  
935 - 96±  
88± - 915  
925 - 96±  
[dB]  
21.5±1  
21±1  
21±1  
2±.5±1  
21±1  
2±.5±1  
17±1  
15.5±1  
15.5±1  
15±1  
14.5±1  
15±1  
15±1  
max  
max  
-30  
CP±8±5B±836AW  
CP±8±5B±881AW  
CP±8±5B±9±2AW  
CP±8±5B±947AW  
CP±8±5B±897AW  
CP±8±5B±942AW  
CP±8±5B1441AW 1429 - 1453  
CP±8±5B1747AW 171± - 1785  
Cp±8±5B1842AW 18±5 - 188±  
CP±8±5B188±AW 185± - 191±  
CP±8±5B196±AW 193± - 199±  
CP±8±5B19±7AW 1895 - 192±  
CP±8±5B189±AW 188± - 19±±  
Isolation  
-35  
-40  
GSM  
±.25  
-45  
-50  
1.00  
-9  
-10  
2.40  
E-GSM  
1.20  
1.40  
1.60  
1.80  
2.00  
2.20  
PDC  
PCN  
Frequency (GHz)  
1.2  
±.3  
PCS  
±.4  
±.3  
PHP  
DECT  
Wireless LAN CP±8±5B2442AW 24±± - 2484  
13±1  
±.4  
Important: Couplers can be used at any frequency within the indicated range.  
48  
Thin-Film Directional Couplers  
CP0805 Layout Types  
LAYOUT  
LAYOUT  
RF IN  
Port  
COUP Port  
RF IN  
Port  
COUP Port  
RF OUT  
Port  
RF OUT  
Port  
5± OHM (External Resistorꢀ  
5± OHM (External Resistorꢀ  
Type: B  
Sub-Type: C  
Type: B  
Sub-Type: B  
0
0
-5  
0
-5  
0
I. Loss  
I. Loss  
-1  
-2  
-3  
-4  
-5  
-1  
-2  
-10  
-10  
-15  
-20  
-3  
-4  
-5  
-15  
-20  
-25  
-30  
-35  
-40  
Coupling  
Coupling  
R. Loss  
-25  
-30  
R. Loss  
-6  
-6  
-7  
-35  
-40  
-7  
Isolation  
-8  
Isolation  
-8  
-45  
-50  
-9  
-9  
-45  
-50  
1.10  
3
-10  
1.00 1.20 1.40 1.60 1.80 2.00 2.20 2.40 2.60  
-10  
2.50  
1.30  
1.50  
1.70  
1.90  
2.10  
2.30  
Frequency (GHz)  
Frequency (GHz)  
P/N  
Examples  
Frequency  
Band [MHz]  
824 - 849  
869 - 894  
89± - 915  
935 - 96±  
88± - 915  
925 - 96±  
Coupling I. Loss VSWR  
P/N  
Examples  
Frequency  
Band [MHz]  
824 - 849  
869 - 894  
89± - 915  
935 - 96±  
88± - 915  
925 - 96±  
Coupling I. Loss VSWR  
Application  
AMPS  
Application  
AMPS  
[dB]  
23.5±1  
23±1  
max  
max  
[dB]  
max  
max  
CP±8±5B±836BW  
CP±8±5B±881BW  
CP±8±5B±9±2BW  
CP±8±5B±947BW  
CP±8±5B±897BW  
CP±8±5B±942BW  
CP±8±5B1441BW 1429 - 1453  
CP±8±5B1747BW 171± - 1785  
CP±8±5B1842BW 18±5 - 188±  
CP±8±5B188±BW 185± - 191±  
CP±8±5B196±BW 193± - 199±  
CP±8±5B19±7BW 1895 - 192±  
CP±8±5B189±BW 188± - 19±±  
CP±8±5B±836CW  
CP±8±5B±881CW  
CP±8±5B±9±2CW  
CP±8±5B±947CW  
CP±8±5B±897CW  
CP±8±5B±942CW  
CP±8±5B1441CW 1429 - 1453  
CP±8±5B1747CW 171± - 1785  
Cp±8±5B1842CW 18±5 - 188±  
CP±8±5B188±CW 185± - 191±  
Cp±8±5B196±CW 193± - 199±  
CP±8±5B19±7CW 1895 - 192±  
CP±8±5B189±CW 188± - 19±±  
25±1  
24.5±1  
24±1  
22.5±1  
22±1  
GSM  
GSM  
24±1  
23±1  
22±1  
24.5±1  
24±1  
E-GSM  
PDC  
E-GSM  
PDC  
±.25  
±.25  
18.5±1  
17±1  
16.5±1  
16.5±1  
16±1  
2±±1  
18.5±1  
18.5±1  
18±1  
PCN  
PCN  
1.2  
1.2  
PCS  
PCS  
17.5±1  
18±1  
18±1  
PHP  
DECT  
16±1  
16±1  
PHP  
DECT  
Wireless LAN CP±8±5B2442BW 24±± - 2484  
14±1  
±.4  
Wireless LAN CP±8±5B2442CW 24±± - 2484  
16±1  
±.4  
Important: Couplers can be used at any frequency within the indicated range.  
49  
Thin-Film Directional Couplers  
CP0805 and CP0603 Test Jig  
ITF TEST JIG FOR COUPLER TYPES 0805 AND 0603 SMD  
GENERAL DESCRIPTION  
MEASUREMENT PROCEDURE  
This jig is designed for the testing of CP0805 and CP0603  
series Directional Couplers using a vector network analyzer.  
When measuring a component, it can be either soldered or  
pressed by a non-metallic stick until all four ports touch the  
appropriate pads. To measure the coupling (and the R. Loss)  
place the component on the Port 1 & Port 2 pads. Use two  
SMA 50terminations (male) to terminate the ports, which  
are not connected to the network analyzer, and connect  
the network analyzer to the two ports. A 90° rotation of  
the component on its pads allows measuring a second  
parameter (I. Loss).  
It consists of a FR4 multi-layer substrate, having 50Ω  
microstrips as conducting lines and a ground plane in the  
middle layer, located at a distance of 0.2mm from the  
microstrips.  
The connectors are SMA type (female), ‘Johnson Components  
Inc.’ Product P/N: 142-0701-881.  
The jig is designed for a full 2-port calibration. LOAD calibration  
can be done either by a 50SMA termination, or by soldering  
a 50chip resistor at the 50ports.  
Connector (1 of 12ꢀ  
P/N 142-±7±1-881  
Load & Thru  
Calibration Area  
Short  
Open  
3
Port 1  
Port 2  
Coupler 0805  
 
Ω  
Port 1  
Coupler 0603  
Ω  
Port 2  
Ω  
CP0805 SERIES DIRECTIONAL COUPLERS  
Orientation and Tape and Reel Packaging Specification  
(Top View)  
5±  
OHM  
5±  
OHM  
COUP  
COUP  
RF  
IN  
RF  
OUT  
RF  
IN  
RF  
OUT  
TYPE AA  
TYPE AC  
TYPE BA  
TYPE AB  
TYPE AD  
TYPE BB  
5±  
5±  
5±  
COUP  
COUP  
COUP  
OHM  
OHM  
OHM  
RF  
IN  
RF  
OUT  
RF  
IN  
RF  
OUT  
RF  
IN  
RF  
OUT  
TYPE AE  
RF  
IN  
RF  
IN  
RF  
IN  
COUP  
COUP  
COUP  
5±  
OHM  
5±  
OHM  
5±  
OHM  
RF  
OUT  
RF  
OUT  
RF  
OUT  
TYPE BC  
The parts should be mounted on the PCB with White (Alumina)  
side down and the "dark" side up.  
5±  
Thin-Film Directional Couplers  
DB0805 3dB 90° Couplers  
GENERAL DESCRIPTION  
ITF TECHNOLOGY  
The ITF SMD 3dB 90° Coupler is based on thin-film multilayer  
technology. The technology provides a miniature part with excellent  
high frequency performance and rugged construction for reliable  
automatic assembly.  
FEATURES  
• Miniature 0805 size  
APPLICATIONS  
• Balanced Amplifiers and  
Signal Distribution in  
• Low I. Loss  
Mobile Communications  
• High Isolation  
• Power Handling:  
10W RF CW  
The ITF 3dB 90° Coupler is offered in a variety of frequency bands  
compatible with various types of high frequency wireless  
systems.  
• Surface Mountable  
• Supplied on Tape and Reel  
• Operating Temperature  
-40°C to +85°C  
Recommended Pad Layout Dimensions  
mm (inches)  
DIMENSIONS:  
millimeters (inches)  
2.24 (0.088)  
Bottom View  
0.70  
(0.028)  
2.±3±±.1±  
(±.±8±±±.±±4ꢀ  
L
W
1.55±±.1±  
(±.±61±±.±±4ꢀ  
B
L
W
±.98±±.15  
(±.±37±±.±±6ꢀ  
T
T
3
±.56±±.25  
(±.±22±±.±1±ꢀ  
±.35±±.15  
A
B
1.76  
(0.069)  
0.64  
(0.025)  
GROUND  
(±.±14±±.±±6ꢀ  
A
TERMINALS (Top View)  
Orientation in Tape  
0.15 (0.006) TYP.  
5±  
5±  
OUT1  
OUT2  
OUT1  
OHM  
OHM  
Code Letter  
Marking  
IN  
IN  
OUT2  
ELECTRICAL PARAMETERS*  
Frequency FO I. Loss @ FO Phase Balance Code Letter  
Part Number  
[MHz]  
[dB]  
±.35  
±.35  
±.35  
±.35  
±.35  
±.3±  
±.3±  
±.3±  
±.25  
±.25  
±.25  
[deg] max.  
Marking  
DB±8±5A±88±AWTR  
DB±8±5A±915AWTR  
DB±8±5A±967AWTR  
DB±8±5A135±AWTR  
DB±8±5A165±AWTR  
DB±8±5A18±±AWTR  
DB±8±5A185±AWTR  
DB±8±5A19±±AWTR  
DB±8±5A195±AWTR  
DB±8±5A214±AWTR  
DB±8±5A2325AWTR  
88±±3±  
915±3±  
967±3±  
3
3
3
3
3
3
3
3
3
3
3
Y
V
V
C
F
135±±5±  
165±±5±  
18±±±5±  
185±±5±  
19±±±5±  
195±±5±  
214±±5±  
2325±5±  
F
K
K
K
L
T
*With Recommended Pad Layout  
All intermediate frequencies within the  
indicated range are readily available.  
Important:  
51  
Thin-Film Directional Couplers  
DB0805 3dB 90° Couplers  
880 30MHz DB0805A0880AWTR  
-3.±  
I. Loss 1  
-3.2  
-3.4  
I. Loss 2  
-3.6  
3
-3.8  
85±  
865  
88±  
895  
91±  
Frequency (MHzꢀ  
-1±  
-12  
-14  
-16  
-18  
-2±  
-22  
R. Loss  
Isolation  
-24  
-26  
-28  
-3±  
85±  
855  
88±  
9±5  
93±  
Frequency (MHzꢀ  
52  
Thin-Film Directional Couplers  
DB0805 3dB 90° Couplers  
915 30MHz DB0805A0915AWTR  
-2.8  
-3.±  
-3.2  
I. Loss 1  
-3.4  
I. Loss 2  
3
-3.6  
-3.8  
885  
9±±  
915  
93±  
945  
Frequency (MHzꢀ  
-1±  
-12  
-14  
-16  
-18  
-2±  
-22  
Isolation  
R. Loss  
-24  
-26  
-28  
-3±  
865  
89±  
915  
94±  
965  
Frequency (MHzꢀ  
53  
Thin-Film Directional Couplers  
DB0805 3dB 90° Couplers  
967 30MHz DB0805A0967AWTR  
-2.8  
-3.±  
-3.2  
I. Loss 1  
-3.4  
I. Loss 2  
3
-3.6  
-3.8  
937  
952  
967  
982  
997  
Frequency (MHzꢀ  
-1±  
-12  
-14  
-16  
-18  
-2±  
-22  
-24  
-26  
-28  
-3±  
R. Loss  
Isolation  
917  
942  
967  
992  
1±17  
Frequency (MHzꢀ  
54  
Thin-Film Directional Couplers  
DB0805 3dB 90° Couplers  
1350 50MHz DB0805A1350AWTR  
-3.±  
-3.2  
I. Loss 1  
-3.4  
I. Loss 2  
-3.6  
3
-3.8  
13±±  
135±  
14±±  
Frequency (MHzꢀ  
-1±  
-12  
-14  
-16  
-18  
-2±  
-22  
Isolation  
R. Loss  
-24  
-26  
-28  
-3±  
13±±  
135±  
14±±  
Frequency (MHzꢀ  
55  
Thin-Film Directional Couplers  
DB0805 3dB 90° Couplers  
1650 50MHz DB0805A1650AWTR  
-2.8  
-3.±  
I. Loss 1  
-3.2  
-3.4  
3
I. Loss 2  
-3.6  
155±  
16±±  
165±  
17±±  
175±  
Frequency (MHzꢀ  
-1±  
-12  
-14  
-16  
-18  
-2±  
-22  
Isolation  
R. Loss  
-24  
-26  
-28  
-3±  
155±  
16±±  
165±  
17±±  
175±  
Frequency (MHzꢀ  
56  
Thin-Film Directional Couplers  
DB0805 3dB 90° Couplers  
1800 50MHz DB0805A1800AWTR  
-2.8  
-3.±  
I. Loss 1  
-3.2  
I. Loss 2  
-3.4  
3
-3.6  
175±  
1775  
18±±  
1825  
185±  
Frequency (MHzꢀ  
-1±  
-12  
-14  
-16  
-18  
-2±  
-22  
-24  
-26  
-28  
-3±  
Isolation  
R. Loss  
175±  
1775  
18±±  
1825  
185±  
Frequency (MHzꢀ  
57  
Thin-Film Directional Couplers  
DB0805 3dB 90° Couplers  
1850 50MHz DB0805A1850AWTR  
-2.8  
-3.±  
I. Loss 1  
-3.2  
I. Loss 2  
-3.4  
3
-3.6  
18±±  
1825  
185±  
1875  
19±±  
Frequency (MHzꢀ  
-1±  
-12  
-14  
-16  
-18  
-2±  
-22  
-24  
-26  
-28  
-3±  
R. Loss  
Isolation  
18±±  
1825  
185±  
1875  
19±±  
Frequency (MHzꢀ  
58  
Thin-Film Directional Couplers  
DB0805 3dB 90° Couplers  
1900 50MHz DB0805A1900AWTR  
-3.±  
I. Loss 1  
-3.2  
I. Loss 2  
-3.4  
3
-3.6  
185±  
1875  
19±±  
1925  
195±  
Frequency (MHzꢀ  
-1±  
-12  
-14  
-16  
-18  
-2±  
-22  
-24  
-26  
-28  
-3±  
Isolation  
R. Loss  
185±  
1875  
19±±  
1925  
195±  
Frequency (MHzꢀ  
59  
Thin-Film Directional Couplers  
DB0805 3dB 90° Couplers  
1950 50MHz DB0805A1950AWTR  
-2.8  
-3.±  
I. Loss 1  
-3.2  
I. Loss 2  
-3.4  
-3.6  
3
19±±  
1925  
195±  
1975  
2±±±  
Frequency (MHzꢀ  
-1±  
-12  
-14  
-16  
-18  
-2±  
-22  
-24  
-26  
-28  
-3±  
R. Loss  
Isolation  
19±±  
1925  
195±  
1975  
2±±±  
Frequency (MHzꢀ  
6±  
Thin-Film Directional Couplers  
DB0805 3dB 90° Couplers  
2140 50MHz DB0805A2140AWTR  
-2.6  
-2.8  
-3.±  
I. Loss 1  
-3.2  
I. Loss 2  
-3.4  
-3.6  
-3.8  
3
2±4±  
2±9±  
214±  
219±  
224±  
Frequency (MHzꢀ  
-1±  
-12  
-14  
-16  
-18  
-2±  
-22  
-24  
-26  
-28  
-3±  
R. Loss  
Isolation  
214±  
2±9±  
214±  
219±  
224±  
Frequency (MHzꢀ  
61  
Thin-Film Directional Couplers  
DB0805 3dB 90° Couplers  
2325 50MHz DB0805A2325AWTR  
-3.±  
-3.1  
I. Loss 1  
-3.2  
-3.3  
I. Loss 2  
-3.4  
3
-3.5  
2275  
23±±  
2325  
235±  
2375  
Frequency (MHzꢀ  
-1±  
-12  
-14  
-16  
-18  
-2±  
-22  
-24  
-26  
-28  
-3±  
R. Loss  
Isolation  
2275  
23±±  
2325  
235±  
2375  
Frequency (MHzꢀ  
62  
Thin-Film Directional Couplers  
DB0805 3dB 90° Test Jigs  
GENERAL DESCRIPTION  
These jigs are designed for testing the DB0805 3dB 90°  
Couplers using a Vector Network Analyzer.  
The connectors are SMA type (female), ‘Johnson Components  
Inc.’ Product P/N: 142-0701-841.  
They consist of a dielectric substrate, having 50microstrips  
as conducting lines and a bottom ground plane located at a  
distance of 0.254mm from the microstrips.  
Both a measurement jig and a calibration jig are provided.  
The calibration jig is designed for a full 2-port calibration, and  
consists of an open line, short line and through line. LOAD  
calibration can be done by a 50SMA termination.  
The substrate used is Neltecs NH9338ST0254C1BC.  
MEASUREMENT PROCEDURE  
When measuring a component, it can be either soldered or  
pressed using a non-metallic stick until all four ports touch  
the appropriate pads. Set the VNA to the relevant frequency  
band. Connect the VNA using a 10dB attenuator on the jig  
terminal connected to port 2. Follow the VNAs instruction  
manual and use the calibration jig to perform a full 2-port  
calibration in the required bandwidths.  
Place the coupler on the measurement jig as follows:  
3
Input (Coupler) Connector 1 (Jig)  
50(Coupler) Connector 2 (Jig)  
Output 1 (Coupler) Connector 3 (Jig)  
Output 2 (Coupler) Connector 4 (Jig)  
To measure R. Loss and I. Loss 1 connect:  
Connector 1 (Jig) Port 1 (VNA) Connector 3 (Jig) Port 2 (VNA)  
Connector 2 (Jig) 50Ω  
Connector 4 (Jig) 50Ω  
To measure R. Loss and I. Loss 2 connect:  
Connector 1 (Jig) Port 1 (VNA) Connector 3 (Jig) 50Ω  
Connector 2 (Jig) 50Ω  
Connector 4 (Jig) Port 2 (VNA)  
To measure Isolation connect:  
Connector 1 (Jig) 50Ω  
Connector 3 (Jig) Port 1 (VNA)  
Connector 4 (Jig) Port 2 (VNA)  
Connector 2 (Jig) 50Ω  
Calibration Jig  
Measurement Jig  
Connector 1  
Load &  
Through  
Connector  
Johnson  
P/N 142-±7±1-841  
Connector 2  
Load &  
Through  
Connector 4  
Short Line  
to GND  
Open  
Line  
Connector 3  
63  
Thin-Film Technology  
Integrated Thin-Film  
Low-Pass Filters  
4
64  
Thin-Film Low Pass Filter  
LP0603 Lead-Free LGA Type  
GENERAL DESCRIPTION  
APPLICATIONS  
The LP0603 ITF (Integrated Thin Film) Lead-Free LGA Low  
Pass Filter is based on thin-film multilayer technology. The  
technology provides a miniature part with excellent high  
frequency performance and rugged construction for reliable  
automatic assembly.  
• Mobile communications  
• Satellite TV receivers  
• GPS  
• Vehicle location systems  
• Wireless LANs  
• RFID  
The ITF Low Pass Filters are offered in a variety of frequency  
bands compatible with various types of high frequency  
wireless systems.  
LAND GRID ARRAY ADVANTAGES  
• Inherent Low Profile  
• Self Alignment during Reflow  
• Excellent Solderability  
• Low Parasitics  
FEATURES  
• Miniature Size: 0603  
• Frequency Range: 900MHz -2.4GHz  
• Characteristic Impedance: 50 Ohm  
• Operating/Storage Temperature: -40°C to +85°C  
• Power Rating: 3W Continuous  
• Low Profile  
• Better Heat Dissipation  
• Rugged Construction  
• Lead Free  
Taped and Reeled  
HOW TO ORDER  
4
LP  
0603  
A
XXXX  
A
N
TR  
Style  
Size  
0603  
Type  
Frequency  
Sub-Type  
Termination  
LGA  
Taped & Reeled  
MHz  
Ni/Lead Free Solder  
FINAL QUALITY INSPECTION  
Finished parts are 100ꢀ tested for electrical parameters and  
visual characteristics. Each production lot is evaluated on a  
sample basis for:  
• Static Humidity: 85°C, 85ꢀ RH, 160 hours  
• Endurance: 125°C, IR, 4 hours  
TERMINATION  
Nickel/Lead-Free Solder coating compatible with automatic  
soldering technologies: reflow, wave soldering, vapor phase  
and manual.  
65  
Thin-Film Low Pass Filter  
LP0603 Lead-Free LGA Type  
DIMENSIONS: millimeters (inches)  
(Bottom View)  
TERMINALS AND ORIENTATION IN TAPE  
(Top View)  
S
B
A
GND  
GND  
GND  
GND  
IN  
IN  
OUT  
OUT  
L
T
W
RECOMMENDED PAD LAYOUT (mm)  
1.6±±.1  
±.25±±.±5  
L
W
T
A
B
S
(±.±63±±.±±4ꢀ  
(±.±1±±±.±±2ꢀ  
±.84±±.1  
(±.±33±±.±±4ꢀ  
±.6±±±.1  
(±.±24±±.±±4ꢀ  
±.2±±±.±5  
(±.±±8±±.±±2ꢀ  
±.±5±±.±5  
(±.±±2±±.±±2ꢀ  
1.1±  
(±.±43ꢀ  
±.4±  
(±.±16ꢀ  
4
±.5±  
(±.±2±ꢀ  
1.75 (±.±69ꢀ  
ELECTRICAL CHARACTERISTICS  
(Guaranteed over –40°C to +85°C Operating Temperature Range)  
P/N  
Frequency  
Band [MHz]  
I. Loss  
[dB]  
VSWR  
max  
Attentuation  
typ.  
[dB]  
[dB]  
±.35 typ  
(±.5 maxꢀ  
25 @ 2xF±  
14 @ 3xF±  
LP±6±3A±9±2ANTR  
LP±6±3A±947ANTR  
LP±6±3A1747ANTR  
LP±6±3A1842ANTR  
LP±6±3A188±ANTR  
LP±6±3A195±ANTR  
LP±6±3A214±ANTR  
LP±6±3A2442ANTR  
89±-915  
935-96±  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
±.35 typ  
(±.5 maxꢀ  
25 @ 2xF±  
17 @ 3xF±  
±.3 typ  
(±.5 maxꢀ  
25 @ 2xF±  
17 @ 3xF±  
171±-1785  
18±5-188±  
184±-192±  
192±-198±  
211±-217±  
2412-2472  
±.3 typ  
(±.5 maxꢀ  
27 @ 2xF±  
15 @ 3xF±  
±.3 typ  
(±.5 maxꢀ  
25 @ 2xF±  
17 @ 3xF±  
±.3 typ  
(±.5 maxꢀ  
27 @ 2xF±  
15 @ 3xF±  
±.3 typ  
(±.5 maxꢀ  
27 @ 2xF±  
17 @ 3xF±  
±.3 typ  
(±.5 maxꢀ  
25 @ 2xF±  
17 @ 3xF±  
Note: additional frequencies available upon request  
66  
Thin-Film Low Pass Filter  
LP0603 Lead-Free LGA Type Test Jig  
LP0603A0947ANTR  
LP0603A0902ANTR  
0
0
-5  
S21  
S11  
S21  
F0  
F0  
-5  
-10  
-15  
-20  
-25  
-30  
–35  
-40  
-45  
-50  
-10  
-15  
-20  
-25  
-30  
–35  
-40  
-45  
-50  
3*F0  
3*F0  
S11  
2*F0  
2*F0  
0
0.25 0.5 0.75  
1
1.25 1.5 1.75  
2
2.25 2.5 2.75  
3
3.25 3.5 3.75  
4
0
0.25 0.5 0.75  
1
1.25 1.5 1.75  
2
2.25 2.5 2.75  
3
3.25 3.5 3.75  
4
Frequency (GHz)  
Frequency (GHz)  
LP0603A1747ANTR  
LP0603A1842ANTR  
0
-5  
0
-5  
S21  
F0  
S21  
F0  
-10  
-15  
-20  
-25  
-30  
–35  
-40  
-45  
-50  
-10  
-15  
-20  
-25  
-30  
–35  
-40  
-45  
-50  
S11  
S11  
3*F0  
3*F0  
4
2*F0  
2*F0  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
6.5  
7
7.5  
8
8.5  
9
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
6.5  
7
7.5  
8
Frequency (GHz)  
Frequency (GHz)  
LP0603A1880ANTR  
LP0603A1950ANTR  
0
-5  
0
S21  
S11  
S21  
F0  
F0  
-5  
-10  
-15  
-20  
-25  
-30  
–35  
-40  
-45  
-50  
-10  
-15  
-20  
-25  
-30  
–35  
-40  
-45  
-50  
S11  
3*F0  
3*F0  
2*F0  
2*F0  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
6.5  
7
7.5  
8
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
6.5  
7
7.5  
8
Frequency (GHz)  
Frequency (GHz)  
67  
Thin-Film Low Pass Filter  
LP0603 Lead-Free LGA Type Test Jig  
LP0603A2140ANTR  
LP0603A2442ANTR  
0
0
-5  
S21  
F0  
S21  
S11  
-5  
-10  
-15  
-20  
-25  
-30  
–35  
-40  
-45  
-50  
-10  
-15  
-20  
-25  
-30  
–35  
-40  
-45  
-50  
S11  
3*F0  
3*F0  
2*F0  
2*F0  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
6.5  
7
7.5  
8
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10  
Frequency (GHz)  
Frequency (GHz)  
TEST JIG FOR LP0603 LEAD-FREE LGA LOW PASS FILTER  
GENERAL DESCRIPTION  
MEASUREMENT PROCEDURE  
These jigs are designed for testing the LP0603 LGA Low  
Pass Filters using a Vector Network Analyzer.  
Follow the VNAs instruction manual and use the calibration  
jig to perform a full 2-Port calibration in the required band-  
widths.  
4
They consist of a dielectric substrate, having 50microstrips  
as conducting lines and a bottom ground plane located at a  
distance of 0.127mm from the microstrips.  
Solder the filter to the measurement jig as follows:  
Input  
(Filter)  
Connector 1 (Jig)  
Connector 2 (Jig)  
GND (Filter) GND (Jig)  
GND (Filter) GND (Jig)  
The substrate used is Neltecs NH9338ST0127C1BC (or  
similar).  
Output  
(Filter)  
The connectors are SMA type (female), ‘Johnson  
Components Inc.’ Product P/N: 142-0701-841 (or similar).  
Both a measurement jig and a calibration jig are provided.  
Set the VNA to the relevant frequency band. Connect the  
VNA using a 10dB attenuator on the jig terminal connected  
to port 2 (using an RF cable).  
The calibration jig is designed for a full 2-port calibration, and  
consists of an open line, short line and through line. LOAD  
calibration can be done by a 50SMA termination.  
Measurement  
Calibration Jig  
Short line to  
GND  
Open  
line  
Connector 1  
Connector 2  
Connector  
Johnson  
P/N 152-0701-841  
Load &  
Through  
Load &  
OUT  
68  
Thin-Film Low Pass Filter  
LP0805 Type Harmonic  
DIMENSIONS: millimeters (inches)  
GENERAL DESCRIPTION  
2.±3±±.1  
The ITF (Integrated Thin-Film) SMD Filter is based on thin-film  
multilayer technology. The technology provides a miniature  
part with excellent high frequency performance and rugged  
construction for reliable automatic assembly.  
L
W
T
(±.±8±±±.±±4ꢀ  
1.55±±.1  
(±.±61±±.±±4ꢀ  
1.±2±±.1  
(±.±4±±±.±±4ꢀ  
±.56±±.25  
(±.±22±±.±1±ꢀ  
±.35±±.15  
(±.±14±±.±±6ꢀ  
The ITF Filter is offered in a variety of frequency bands com-  
patible with various types of high frequency wireless systems.  
A
B
FEATURES  
• Small Size: 0805  
• Frequency Range: 800MHz - 3.5GHz  
• Characteristic Impedance: 50Ω  
• Operating / Storage Temp.: -40°C to +85°C  
• Power Rating: 3W Continuous  
• Low Profile  
FINAL QUALITY INSPECTION  
Finished parts are 100ꢀ tested for electrical parameters and  
visual/mechanical characteristics. Each production lot is  
evaluated on a sample basis for:  
• Rugged Construction  
Taped and Reeled  
• Static Humidity: 85°C, 85ꢀ RH, 160 hours  
• Endurance: 125°C, IR 4 hours  
APPLICATIONS  
TERMINATION  
Nickel/Solder coating (Sn, Pb) compatible with automatic  
soldering technologies: reflow, wave soldering, vapor phase  
and manual.  
• Mobile Communications  
• Satellite TV Receivers  
• GPS  
4
• Vehicle Location Systems  
• Wireless LANs  
HOW TO ORDER  
LP  
0805A  
0902  
AW  
TR  
Style  
Low Pass  
Size  
0805  
Frequency  
Termination  
Nickel/Solder (Sn/Pb)  
Packaging Code  
TR = Tape and Reel  
MHz  
TERMINALS AND LAYOUT (Top View)  
Orientation in Tape  
TYPE A  
TYPE B  
TYPE C  
TYPE D  
IN  
GND  
IN  
GND  
IN  
GND  
GND  
IN  
GND  
GND  
OUT  
GND OUT  
GND  
OUT  
OUT  
69  
Thin-Film Low Pass Filter  
LP0805 Type Harmonic  
ELECTRICAL CHARACTERISTICS  
Part  
Frequency  
Band (MHz)  
880 - 915  
925 - 960  
890 - 915  
935 - 960  
1007 - 1231  
824 - 849  
I. Loss  
max  
VSWR  
max  
Attenuation  
(dB) Typical  
Layout  
Application  
Number  
Type  
A
E-GSM  
LP0805A0897AW  
LP0805A0942AW  
LP0805A0902AW  
LP0805A0947AW  
LP0805A1119AW  
LP0805A0836AW  
LP0805A0881AW  
LP0805A1747AW  
LP0805A1842AW  
LP0805A1880AW  
LP0805A1960AW  
LP0805A1907AW  
LP0805A1890AW  
LP0805A2150AW  
A
A
A
A
A
A
D
D
D
D
D
D
B
GSM  
AMPS  
PCN  
PCS  
869 - 894  
1710 - 1785  
1805 - 1880  
1850 - 1910  
1930 - 1990  
1895 - 1920  
1880 - 1900  
1935 - 2365  
2400 - 2484  
3400 ~ 3600  
0.4dB  
(0.3dB typ)  
1.7  
30 @ 2XFo  
20 @ 3xFo  
PHP  
DECT  
3G  
Wireless LAN LP0805A2442AW  
B
C
WLL  
LP0805A3500AW  
Typical Electrical Performance  
LP0805A0902AWTR  
LP0805A0836AWTR  
LP0805A0881AWTR  
±
±
±
Fo  
Fo  
Fo  
-1±  
-2±  
-3±  
-4±  
-1±  
-2±  
-3±  
-4±  
-1±  
-2±  
-3±  
4
3Fo  
3Fo  
-4±  
3Fo  
2Fo  
2Fo  
2Fo  
-5±  
-5±  
-5±  
-6±  
-7±  
-6±  
-7±  
-6±  
-7±  
±
±.5  
1
1.5  
2
2.5  
3
3.5  
4
±
±.5  
1
1.5  
2
2.5  
3
3.5  
4
±
±.5  
1
1.5  
2
2.5  
3
3.5  
Frequency (GHzꢀ  
Frequency (GHzꢀ  
Frequency (GHzꢀ  
LP0805A1842AWTR  
LP0805A1747AWTR  
LP0805A0967AWTR  
±
±
±
Fo  
Fo  
Fo  
-1±  
-2±  
-3±  
-4±  
-1±  
-2±  
-3±  
-4±  
-1±  
-2±  
-3±  
-4±  
3Fo  
3Fo  
2Fo  
3Fo  
2Fo  
-5±  
-5±  
-5±  
2Fo  
-6±  
-7±  
-6±  
-7±  
-6±  
-7±  
±
1
2
3
4
5
6
7
8
9
1±  
±
1
2
3
4
5
6
7
8
9
1±  
±
±.5  
1
1.5  
2
2.5  
3
3.5  
4
Frequency (GHzꢀ  
Frequency (GHzꢀ  
Frequency (GHzꢀ  
LP0805A1950AWTR  
LP0805A2442AWTR  
LP0805A3500AWTR  
±
±
±
Fo  
Fo  
Fo  
-1±  
-2±  
-3±  
-4±  
-1±  
-2±  
-3±  
-4±  
-1±  
-2±  
-3±  
-4±  
3Fo  
3Fo  
3Fo  
2Fo  
-5±  
-5±  
-5±  
2Fo  
-6±  
-7±  
-6±  
-7±  
-6±  
-7±  
2Fo  
±
1
2
3
4
5
6
7
8
9
1±  
±
1
2
3
4
5
6
7
8
9
1±  
±
1
2
3
4
5
6
7
8
9
1±  
11  
12 13  
Frequency (GHzꢀ  
Frequency (GHzꢀ  
Frequency (GHzꢀ  
LP0805A1119AWTR  
LP0805A2150AWTR  
±
-1±  
-2±  
-3±  
-4±  
-5±  
-6±  
-7±  
±
Fo  
Fo  
-1±  
-2±  
-3±  
-4±  
-5±  
-6±  
-7±  
3Fo  
3Fo  
2Fo  
2Fo  
±
±.5  
1
1.5  
2
2.5  
3
3.5  
4
±
1
2
3
4
5
6
7
8
9
1±  
Frequency (GHzꢀ  
Frequency (GHzꢀ  
7±  
Thin-Film Low Pass Filter  
LP0805 Test Jig  
ITF TEST JIG FOR LOW PASS FILTER 0805  
GENERAL DESCRIPTION  
This jig is designed for the testing of the 0805 Low Pass Filter  
using a vector network analyzer.  
CALIBRATION AND  
MEASUREMENT PROCEDURE  
The jig is designed for a full 2-port calibration. LOAD calibra-  
It consists of a FR4 multi-layer substrate, having 50Ω  
microstrips as conducting lines and a ground plane in the  
middle layer, located at a distance of 0.2mm from the  
microstrips.  
tion is carried out using a 50SMA termination.  
To measure a component, it can be either soldered or  
pressed down by a non-metallic stick until all four ports  
touch the appropriate pads.  
The connectors are SMA type (female), ‘Johnson Components  
Inc.’ Product P/N: 142-0701-881.  
Calibration  
Measurement  
Short  
4
Thru/Load  
Open  
Open  
OUT  
IN  
Connector  
p/n 142-0701-881  
(6x)  
Connector  
p/n 142-0701-881  
(6x)  
GND  
71  
Thin-Film Products  
Designer Kits  
Accu-P®/Accu-L® Kits  
5
72  
RF/Microwave Thin-Film Products  
Designer Kits (Special Kits Available Upon Request)  
®
®
®
Accu-P  
Accu-P  
Accu-P  
Designer Kit Type 1700  
Designer Kit Type 1800  
Designer Kit Type 1300  
®
®
®
Order Number: Accu-P 0201KIT02  
Order Number: Accu-P 0201KIT03  
Order Number: Accu-P 0402KIT01  
Capacitors  
Value pF  
Capacitors  
Value pF  
Capacitors  
Value pF  
Volts  
Tolerance  
Volts  
Tolerance  
Volts  
Tolerance  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
1.5  
1.8  
2.0  
2.2  
2.4  
2.7  
3.0  
3.3  
3.6  
3.9  
4.7  
5.6  
6.8  
7.5  
8.2  
10.0  
12.0  
A
A
A
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
G
G
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
1.9  
2.0  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
3.0  
3.1  
3.3  
3.4  
3.6  
3.9  
4.1  
4.3  
4.5  
4.7  
A
A
A
A
A
A
A
A
A
A
A
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
1.2  
1.5  
1.8  
2.0  
2.2  
2.4  
2.7  
3.0  
3.3  
3.9  
4.7  
5.6  
6.8  
8.2  
10.0  
12.0  
15.0  
18.0  
22.0  
A
A
A
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
G
G
G
G
G
25  
25  
25  
16  
10  
16  
10  
16  
10  
600 Capacitors, 20 each of 30 values  
Tolerance A = 0.05pF  
B = 0.1pF  
600 Capacitors, 20 each of 30 values  
Tolerance A = 0.05pF  
B = 0.1pF  
600 Capacitors, 20 each of 30 values  
Tolerance A = 0.05pF  
B = 0.1pF  
G = 2ꢀ  
G = 2ꢀ  
®
®
®
Accu-P  
Accu-P  
Accu-P  
Designer Kit Type 1400  
Designer Kit Type 900  
Designer Kit Type 800  
®
®
®
Order Number: Accu-P 0402KIT02  
Order Number: Accu-P 0603KIT01  
Order Number: Accu-P 0805KIT02  
5
Capacitors  
Capacitors  
Capacitors  
Volts  
Tolerance  
Volts  
Tolerance  
Volts  
Tolerance  
Value pF  
Value pF  
Value pF  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
1.2  
1.5  
1.8  
2.0  
2.2  
2.4  
2.7  
3.0  
3.3  
3.9  
4.7  
5.6  
6.8  
8.2  
10.0  
12.0  
15.0  
18.0  
22.0  
A
A
A
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
G
G
G
G
G
0.1  
A
A
A
A
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
G
G
G
G
G
J
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
1.9  
2.0  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
3.0  
3.1  
3.3  
3.4  
3.6  
3.9  
4.1  
4.3  
4.5  
4.7  
A
A
A
A
A
A
A
A
A
A
A
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
0.2  
0.3  
0.4  
0.5  
0.7  
0.8  
0.9  
1.0  
1.2  
100  
1.5  
1.8  
2.0  
50  
2.2  
25  
2.7  
3.3  
3.9  
4.7  
5.6  
6.8  
8.2  
10.0  
12.0  
15.0  
18.0  
22.0  
27.0  
33.0  
39.0  
47.0  
50  
25  
J
25  
J
J
600 Capacitors, 20 each of 30 values  
Tolerance A = 0.05pF  
B = 0.1pF  
300 Capacitors, 10 each of 30 values  
Tolerance A = 0.05pF G = 2ꢀ  
B = 0.1pF J = 5ꢀ  
600 Capacitors, 20 each of 30 values  
Tolerance A = 0.05pF  
B = 0.1pF  
G = 2ꢀ  
73  
RF/Microwave Thin-Film Products  
Designer Kits (Special Kits Available Upon Request)  
®
®
Accu-P  
Accu-P  
Designer Kit Type 700  
Designer Kit Type 2100  
®
®
Order Number: Accu-P 1210KIT02  
Order Number: Accu-P 0402KIT03  
Capacitors  
Value pF  
Capacitors  
Value pF  
Volts  
Tolerance  
Volts  
Tolerance  
1.0  
B
B
B
B
B
B
B
B
B
G
G
G
G
G
G
0.05  
0.10  
0.15  
0.20  
0.25  
0.30  
0.35  
0.40  
0.45  
0.50  
0.55  
0.60  
0.65  
0.70  
0.75  
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
1.5  
1.8  
2.2  
2.7  
3.3  
4.7  
100  
5.6  
25  
6.8  
10.0  
12.0  
18.0  
22.0  
27.0  
33.0  
150 Capacitors, 10 each of 15 values  
Tolerance B = 0.1pF  
G = 2ꢀ  
300 Capacitors, 20 each of 15 values  
Tolerance P = 0.02pF  
®
®
Accu-P  
Accu-P  
Designer Kit Type 2200  
Designer Kit Type 2000  
®
®
Order Number: Accu-P 0603KIT02  
Order Number: Accu-P 0201KIT04  
Capacitors  
Value pF  
Capacitors  
Value pF  
Volts  
Tolerance  
Volts  
Tolerance  
0.05  
0.10  
0.15  
0.20  
0.25  
0.30  
0.35  
0.40  
0.45  
0.50  
0.55  
0.60  
0.65  
0.70  
0.75  
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
0.05  
0.10  
0.15  
0.20  
0.25  
0.30  
0.35  
0.40  
0.45  
0.50  
0.55  
0.60  
0.65  
0.70  
0.75  
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
50  
25  
5
300 Capacitors, 20 each of 15 values  
Tolerance P 0.02pF  
300 Capacitors, 20 each of 15 values  
Tolerance P 0.02pF  
=
=
®
®
Accu-L  
Accu-L  
Designer Kit Type 1600  
Designer Kit Type 1100  
®
®
Order Number: Accu-L 0603KIT02  
Order Number: Accu-L 0805KIT02  
Inductance  
Tolerance  
Value (nH)  
Inductance  
Tolerance  
Value (nH)  
1.2  
1.5  
1.8  
2.2  
2.7  
3.3  
3.9  
4.7  
5.6  
6.8  
8.2  
10  
C
C
C
C
C
C
C
C
C
C
C
G
G
G
1.8  
2.2  
2.7  
3.3  
3.9  
4.7  
5.6  
6.8  
8.2  
10.0  
12.0  
15.0  
18.0  
22.0  
C
C
C
C
C
C
C
D
D
J
J
J
12  
15  
J
J
280 Inductors, 20 each of 14 values  
280 Inductors, 20 each of 14 values  
Tolerance  
C = 0.2nH  
G = 2ꢀ  
Tolerance  
C = 0.2nH  
D = 0.5nH  
J = 5ꢀ  
74  
RF/Microwave  
MLC’s  
AQ Series  
CDR Series  
Porcelain and Ceramic  
RF/Microwave  
Multilayer Capacitors  
High Voltage RF Power Capacitors  
6
75  
Microwave MLC’s  
AQ Series  
These porcelain and ceramic dielectric multilayer  
capacitor (MLC) chips are best suited for RF/  
Microwave applications typically ranging from 10  
MHz to 4.2 GHz. Characteristic is a fine grained,  
high density, high purity dielectric material imper-  
vious to moisture with heavy internal palladium  
electrodes.  
L
W
A
L
T
W
1±1J  
W
T
L
1R5  
T
These characteristics lend well to applications  
requiring:  
bw  
bw  
bw  
1) high current carrying capabilities;  
2) high quality factors;  
Approx. L x W x T  
L = .±63"/1.6±mm  
W = .±32"/.813mm  
Approx. L x W x T  
L = .±55"/1.4mm  
W = .±55"/1.4mm  
Approx. L x W x T  
L = .11±"/2.8mm  
3) very low equivalent series resistance;  
4) very high series resonance;  
5) excellent stability under stresses of  
changing voltage, frequency, time  
and temperature.  
W = .11±"/2.8mm  
T = .1±2"/2.59mm max.  
T = .±35"/.889mm max. T = .±57"/1.45mm max.  
AQ06  
AQ11/12  
AQ13/14  
MECHANICAL DIMENSIONS: inches (millimeters)  
Case  
Length (L)  
Width (W)  
Thickness (T)  
Band Width (bw)  
.±63±.±±6  
(1.6±±.152ꢀ  
.±32±.±±6  
(.813±.152ꢀ  
.±35 Max.  
(.889ꢀ  
.±14±.±±6  
(.357 +.152ꢀ  
AQ±6  
.±55±.±15  
.±55±.±15  
.±2±/.±57  
.±1± + .±1± -.±±5  
(.254 +.254 -.127ꢀ  
AQ11  
AQ12  
AQ13  
AQ14  
(1.4±±.381ꢀ  
(1.4±±.381ꢀ  
(.5±8/1.45ꢀ  
.±55 + .±15 - .±1±  
(1.4±+ .381 - .254ꢀ  
.±55±.±15  
(1.4±±.381ꢀ  
.±2±/.±57  
(.5±8/1.45ꢀ  
.±1± + .±1± -.±±5  
(.254 +.254 -.127ꢀ  
.11±±.±2±  
(2.79±.5±8ꢀ  
.11±±.±2±  
(2.79±.5±8ꢀ  
.±3±/.1±2  
(.762/2.59ꢀ  
.±15±.±1±  
(.381±.254ꢀ  
.11± + .±2± - .±1±  
(2.79 +.889 -.254ꢀ  
.11±±.±1±  
(2.79±.5±8ꢀ  
.±3±/.1±2  
(.762/2.59ꢀ  
.±15±.±1±  
(.381±.254ꢀ  
*For Tape and Reel packaging details see page 88  
HOW TO ORDER  
AQ  
11  
E
M
100  
J
A
1
ME  
6
Case Size  
(See Chart)  
Capacitance  
Failure Rate  
Packaging*  
Code  
3A = 13" Reel  
(AQ06 only)  
6A = Waffle Pack  
(AQ06 only)  
ME = 7" Reel  
RE = 13" Reel  
WE = Waffle Pack  
1A = 7" Reel  
(AQ06 only)  
EIA Capacitance Code in pF.  
Code  
A = Not  
First two digits = significant  
figures or “R” for decimal  
place.  
AVX Style  
AQ06, AQ11,  
AQ12, AQ13,  
AQ14  
Voltage  
Code  
Applicable  
5 = 50V  
1 = 100V  
E = 150V  
2 = 200V  
V = 250V  
9 = 300V  
7 = 500V  
Third digit = number of zeros  
or after “R” significant figures.  
Termination  
Style Code  
1 = Pd/Ag  
(AQ11/13 only)  
7 = Ag/Ni/Au  
(AQ11/13 only)  
J = Nickel Barrier  
Sn/Pb (60/40) -  
(AQ06/12/14  
only)  
Capacitance  
Tolerance Code  
A = .05 pF  
B = .1 pF  
C = .25 pF  
D = .5 pF  
F = 1ꢀ  
Temperature  
Coefficient Code  
M = +90 20ppm/°C (AQ06/11/12/13/14)  
A = 0 30ppm/°C (AQ11/12/13/14)  
C = 15ꢀ (“J” Termination only) (AQ12/14)  
G = 2ꢀ  
J = 5ꢀ  
K = 10ꢀ  
M = 20ꢀ  
N = 30ꢀ  
PACKAGING  
Standard Packaging = Waffle Pack (for T&R packaging see page 88)  
AQ11/12 maximum quantity per waffle pack is 100.  
AQ13/14 maximum quantity is 80.  
76  
Microwave MLC’s  
AQ Series  
ELECTRICAL SPECIFICATIONS  
AQ06, AQ11, AQ12, AQ13, AQ14  
M & A  
C
Temperature Coefficient  
(M) +90 20PPM/°C and  
15ꢀ  
(A) 0 30PPM/°C  
0.1 pF to 5100 pF  
0.1 pF to 20ꢀ  
Capacitance Range  
0.001µF to 0.1µF  
10ꢀ, 20ꢀ, 30ꢀ  
-55°C to +125°C  
2.5ꢀ @ 1kHz  
Capacitance Tolerance  
Operating Temperature  
Quality Factor or Dissipation Factor  
Insulation Resistance  
-55°C + 125°C  
Per MIL-PRF-55681/4  
Per MIL-PRF-55681  
106 megohm to 470 pF @ +25°C  
105 megohm to 470 pF @ +125°C  
105 megohm above 470 pF @ +25°C  
104 megohm above 470 pF @ +125°C  
104 megohm min @ 25°C & R VDC  
103 megohm min @ 25°C & R VDC  
Aging  
None  
None  
2.5 x rated voltage  
<3ꢀ per decade hour  
None  
2.5 x rated voltage  
Piezoelectric Effects  
Dielectric Withstanding Voltage  
(for 500V rated 1.5 x rated voltage)  
(for 500V rated 1.5 x rated voltage)  
ENVIRONMENTAL CHARACTERISTICS  
Will meet or exceed performance characteristics as outlined in MIL-PRF-55681/4.  
REQUIREMENT  
MIL-STD-202  
METHOD  
Life  
Shock  
1±8, Condition F  
213, Condition J  
2±4, Condition B  
1±4, Condition B  
1±1, Condition B  
2±8  
Vibration  
Immersion  
Salt Spray  
Solderability  
Thermal Shock  
1±7, Condition B  
211  
Terminal Strength  
Temperature Cycling  
Moisture Resistance  
Barometric Pressure  
Resistance to Soldering Heat  
1±2, Condition C  
1±6  
1±5, Condition B  
21±, Condition C  
6
QUALITY FACTOR vs. FREQUENCY (Typical)  
Capacitance  
@ 30 MHz  
3±±±±  
9±±±  
@ 150 MHz  
@ 500 MHz  
@ 1000 MHz  
1 pF  
4±±±  
8±±  
4±±  
2±±  
7±  
35±  
15±  
6±  
1± pF  
2±±±  
3± pF  
5±±±  
8±±  
1±± pF  
2±± pF  
28±±  
4±±  
25  
15±±  
25±  
4±  
12  
CAPACITANCE AND SIZE vs.  
SERIES SELF RESONANT FREQUENCY (Typical)  
DIMENSIONS: inches (millimeters)  
Case  
Size (Nominal)  
1 pF  
10 pF  
50 pF  
100 pF  
.±63 x .±32 x .±35  
(1.6± x .813 x .889ꢀ  
AQ±6  
9.6 GHz  
3.2 GHz  
1.5 GHz  
1.± GHz  
.±55 x .±55 x .±57  
(1.4± x 1.4± x 1.45ꢀ  
AQ11/12  
AQ13/14  
9.6 GHz  
6.4 GHz  
3.2 GHz  
2.2 GHz  
1.5 GHz  
1.± GHz  
1.± GHz  
±.7 GHz  
.11± x .11± x .1±2  
(2.79 x 2.79 x 2.59ꢀ  
77  
Microwave MLC’s  
AQ Series Available Capacitance/Size/WVDC/T.C.  
TABLE I: TC: M (+90 20PPM/°C)  
CASE SIZE 06, 11, 12, 13 & 14  
DIMENSIONS: inches (millimeters)  
Case  
Length  
Width  
Thickness  
Band Width  
Avail. Term.  
06  
.063 .006 (1.60 .152)  
.055 .015 (1.40 .381)  
.055 .025 (1.40 .635)  
.110 .020 (2.79 .508)  
.032 .006 (.813 .152)  
.055 .015 (1.40 .381)  
.055 .015 (1.40 .381)  
.110 .020 (2.79 .508)  
.035 Max. (.889)  
.014 .006 (.357 +.152)  
J
1 & 7  
J
1 & 7  
J
11  
12  
13  
14  
.020/.057 (.508/1.45) .010 +.010 -.005 (.254 +.254 -.127)  
.020/.057 (.508/1.45) .010 +.010 -.005 (.254 +.254 -.127)  
.030/.102 (.762/2.59)  
.030/.102 (.762/2.59)  
.015 .010 (.381 .254)  
.015 .010 (.381 .254)  
.110 +0.035 -0.020 (2.79 +.889 -.508) .110 .020 (2.79 .508)  
Case: AQ11, AQ12  
Case: AQ13, AQ14  
Case: AQ06  
Cap. pF  
Cap. Tol.  
WVDC Cap. pF  
Cap. Tol.  
WVDC Cap. pF  
Cap. Tol.  
WVDC Cap. pF  
Cap. Tol.  
WVDC  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
B
250  
250  
250  
250  
250  
250  
250  
250  
250  
250  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
B
150  
150  
150  
150  
150  
150  
150  
150  
150  
150  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
B
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
100  
110  
120  
130  
150  
160  
180  
200  
220  
240  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
500  
300  
300  
300  
300  
300  
300  
300  
200  
200  
B
B
B
B,C  
B,C  
B,C  
B,C  
B,C  
B,C  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
1.9  
2.0  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
250  
250  
250  
250  
250  
250  
250  
250  
250  
250  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
1.9  
2.0  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
150  
150  
150  
150  
150  
150  
150  
150  
150  
150  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
1.9  
2.0  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
270  
300  
330  
360  
390  
430  
470  
510  
560  
620  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
200  
200  
200  
200  
200  
200  
200  
150  
150  
150  
2.2  
2.4  
2.7  
3.0  
3.3  
3.6  
3.9  
4.3  
4.7  
5.1  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
250  
250  
250  
250  
250  
250  
250  
250  
250  
250  
2.2  
2.4  
2.7  
3.0  
3.3  
3.6  
3.9  
4.3  
4.7  
5.1  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
150  
150  
150  
150  
150  
150  
150  
150  
150  
150  
2.2  
2.4  
2.7  
3.0  
3.3  
3.6  
3.9  
4.3  
4.7  
5.1  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
680  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
150  
150  
150  
150  
150  
750  
820  
910  
1000  
5.6  
6.2  
6.8  
7.5  
8.2  
B, C, D  
250  
250  
250  
250  
250  
250  
250  
250  
250  
250  
5.6  
6.2  
6.8  
7.5  
8.2  
9.1  
10  
11  
12  
13  
B, C, D  
150  
150  
150  
150  
150  
150  
150  
150  
150  
150  
5.6  
6.2  
6.8  
7.5  
8.2  
9.1  
10  
11  
12  
13  
B, C, D  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
B, C, D  
B, C, D  
B, C, D  
B, C, J, K, M  
B, C, J, K, M  
B, C, J, K, M  
B, C, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
B, C, J, K, M  
B, C, J, K, M  
B, C, J, K, M  
B, C, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
B, C, J, K, M  
B, C, J, K, M  
B, C, J, K, M  
B, C, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
6
9.1  
10  
11  
12  
13  
15  
16  
18  
20  
22  
24  
27  
30  
33  
36  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
250  
250  
250  
250  
250  
250  
250  
250  
250  
50  
15  
16  
18  
20  
22  
24  
27  
30  
33  
36  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
150  
150  
150  
150  
150  
150  
150  
150  
150  
150  
15  
16  
18  
20  
22  
24  
27  
30  
33  
36  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
39  
43  
47  
51  
56  
62  
68  
75  
82  
91  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
39  
43  
47  
51  
56  
62  
68  
75  
82  
91  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
150  
150  
150  
150  
150  
150  
150  
150  
150  
150  
39  
43  
47  
51  
56  
62  
68  
75  
82  
91  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
100  
120  
F, G, J, K, M  
F, G J K M  
50  
50  
100  
F, G, J, K, M  
150  
78  
Microwave MLC’s  
AQ Series Available Capacitance/Size/WVDC/T.C.  
TABLE II: TC: A (0 30PPM/°C)  
CASE SIZE 06, 11, 12, 13 & 14  
DIMENSIONS: inches (millimeters)  
Case  
Length  
Width  
Thickness  
Band Width  
Avail. Term.  
06  
.063 .006 (1.60 .152)  
.055 .015 (1.40 .381)  
.055 .025 (1.40 .635)  
.110 .020 (2.79 .508)  
.032 .006 (.813 .152)  
.055 .015 (1.40 .381)  
.055 .015 (1.40 .381)  
.110 .020 (2.79 .508)  
.035 Max. (.889)  
.014 .006 (.357 +.152)  
J
1 & 7  
J
1 & 7  
J
11  
12  
13  
14  
.020/.057 (.508/1.45) .010 +.010 -.005 (.254 +.254 -.127)  
.020/.057 (.508/1.45) .010 +.010 -.005 (.254 +.254 -.127)  
.030/.102 (.762/2.59)  
.030/.102 (.762/2.59)  
.015 .010 (.381 .254)  
.015 .010 (.381 .254)  
.110 +0.035 -0.020 (2.79 +.889 -.508) .110 .020 (2.79 .508)  
Case: AQ06  
Case: AQ11, AQ12  
Case: AQ13, AQ14  
Cap. pF  
Cap. Tol.  
WVDC  
Cap. pF  
Cap. Tol.  
WVDC  
Cap. pF  
Cap. Tol.  
WVDC  
Cap. pF  
Cap. Tol.  
WVDC  
Cap. pF  
Cap. Tol.  
WVDC  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
B
B
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
51  
56  
62  
68  
75  
82  
91  
100  
110  
120  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
500  
500  
500  
500  
500  
500  
500  
500  
300  
300  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
B
B
250  
250  
250  
250  
250  
250  
250  
250  
250  
250  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
B
B
150  
150  
150  
150  
150  
150  
150  
150  
150  
150  
24  
27  
30  
33  
36  
39  
43  
47  
51  
56  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
150  
150  
150  
150  
150  
150  
150  
150  
150  
150  
B,C  
B,C  
B,C  
B,C  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B,C  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B,C  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
1.1  
1.2  
1.3  
1.4  
1.5  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
500  
500  
500  
500  
500  
130  
150  
160  
180  
200  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
300  
300  
300  
300  
300  
1.1  
1.2  
1.3  
1.4  
1.5  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
250  
250  
250  
250  
250  
1.1  
1.2  
1.3  
1.4  
1.5  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
150  
150  
150  
150  
150  
62  
68  
75  
82  
91  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
150  
150  
150  
150  
150  
1.6  
1.7  
1.8  
1.9  
2.0  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
500  
500  
500  
500  
500  
220  
240  
270  
300  
330  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
200  
200  
200  
200  
200  
1.6  
1.7  
1.8  
1.9  
2.0  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
250  
250  
250  
250  
250  
1.6  
1.7  
1.8  
1.9  
2.0  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
150  
150  
150  
150  
150  
100  
110  
120  
130  
150  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
150  
50  
50  
50  
50  
2.2  
2.4  
2.7  
3.0  
3.3  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
500  
500  
500  
500  
500  
360  
390  
430  
470  
510  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
200  
200  
200  
200  
150  
2.2  
2.4  
2.7  
3.0  
3.3  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
250  
250  
250  
250  
250  
2.2  
2.4  
2.7  
3.0  
3.3  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
150  
150  
150  
150  
150  
160  
180  
200  
220  
240  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
50  
50  
50  
50  
50  
3.6  
3.9  
4.3  
4.7  
5.1  
5.6  
6.2  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
560  
620  
680  
750  
820  
910  
1000  
1100  
1200  
1300  
1500  
1600  
1800  
2000  
2200  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
150  
150  
150  
150  
150  
150  
150  
50  
50  
50  
50  
50  
50  
50  
50  
3.6  
3.9  
4.3  
4.7  
5.1  
5.6  
6.2  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
250  
250  
250  
250  
250  
250  
250  
3.6  
3.9  
4.3  
4.7  
5.1  
5.6  
6.2  
6.8  
7.5  
8.2  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, J, K, M 150  
B, C, J, K, M 150  
B, C, J, K, M 150  
B, C, J, K, M 150  
F, G, J, K, M 150  
F, G, J, K, M 150  
F, G, J, K, M 150  
F, G, J, K, M 150  
150  
150  
150  
150  
150  
150  
150  
270  
300  
330  
360  
390  
430  
470  
510  
560  
620  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
6.8 B, C, J, K, M  
7.5 B, C, J, K, M  
8.2 B, C, J, K, M  
9.1 B, C, J, K, M  
10  
11  
12  
13  
6.8 B, C, J, K, M 250  
7.5 B, C, J, K, M 250  
8.2 B, C, J, K, M 250  
9.1 B, C, J, K, M 250  
10  
11  
12  
13  
9.1  
680  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M 250  
F, G, J, K, M 250  
F, G, J, K, M 250  
F, G, J, K, M 250  
10  
750  
11  
820  
12  
910  
13  
1000  
15  
16  
18  
20  
22  
24  
27  
30  
33  
36  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
2400  
2700  
3000  
3300  
3600  
3900  
4300  
4700  
5000  
5100  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
15  
16  
18  
20  
22  
24  
27  
30  
33  
36  
F, G, J, K, M 250  
F, G, J, K, M 250  
F, G, J, K, M 250  
F, G, J, K, M 250  
F, G, J, K, M 250  
15  
16  
18  
20  
22  
F, G, J, K, M 150  
F, G, J, K, M 150  
F, G, J, K, M 150  
F, G, J, K, M 150  
F, G, J, K, M 150  
6
F, G, J, K, M 250  
F, G, J, K, M 250  
F, G, J, K, M 250  
F, G, J, K, M 250  
F, G, J, K, M  
50  
39  
43  
47  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
500  
500  
500  
39  
43  
47  
51  
56  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
50  
50  
50  
50  
50  
62  
68  
75  
82  
91  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
50  
50  
50  
50  
50  
100  
120  
F, G, J, K, M  
F, G J K M  
50  
50  
TABLE III: TC: C ( 15ꢀ)  
CASE SIZE 12 & 14  
Case: AQ12  
Case: AQ14  
Cap. pF Cap. Tol. WVDC  
Cap. pF Cap. Tol. WVDC  
Cap. pF Cap. Tol. WVDC  
Cap. pF Cap. Tol. WVDC  
Cap. pF Cap. Tol. WVDC  
Cap. pF Cap. Tol. WVDC  
1000  
1200  
1500  
1800  
2000  
K, M, N  
K, M, N  
K, M, N  
K, M, N  
K, M, N  
50  
50  
50  
50  
50  
2200 K, M, N  
2700 K, M, N  
3300 K, M, N  
3900 K, M, N  
4700 K, M, N  
50  
50  
50  
50  
50  
5100  
5600  
6800  
8200  
10000  
K, M, N  
K, M, N  
K, M, N  
K, M, N  
K, M, N  
50  
50  
50  
50  
50  
5000  
6800  
K, M, N  
K, M, N  
K, M, N  
K, M, N  
K, M, N  
50  
50  
50  
50  
50  
15000 K, M, N  
18000 K, M, N  
27000 K, M, N  
33000 K, M, N  
39000 K, M, N  
50  
50  
50  
50  
50  
47000 K, M, N  
68000 K, M, N  
50  
50  
8200  
82000 K, M, N  
100000 K, M, N  
50  
50  
10000  
12000  
79  
Microwave MLC’s  
CDR Series — MIL-PRF-55681 (RF/Microwave Chips)  
MILITARY DESIGNATION PER MIL-PRF-55681  
L
W
A
L
T
W
47±J  
T
1±±J  
bw  
bw  
CDR11/12  
CDR13/14  
CROSS REFERENCE: AVX/MIL-PRF-55681  
Per MIL-C-55681  
AVX  
Length (L)  
Width (W)  
Thickness (T)  
Termination Band (bw)  
Style  
Max  
Min  
Max  
Min  
.±55±.±15  
.±55±.±15  
.±57  
.±2±  
.±2±  
.±±5  
CDR11  
CDR12  
CDR13  
CDR14  
AQ11  
AQ12  
AQ13  
AQ14  
(1.4±±.381ꢀ  
(1.4±±.381ꢀ  
(1.45ꢀ  
(.5±8ꢀ  
(.5±8ꢀ  
(.127ꢀ  
.±55±.±25  
.±55±.±15  
.±57  
.±2±  
.±2±  
.±±5  
(1.4±±.635ꢀ  
(1.4±±.381ꢀ  
(1.45ꢀ  
(.5±8ꢀ  
(.5±8ꢀ  
(.127ꢀ  
.11±±.±2±  
.11±±.±2±  
.1±2  
.±3±  
.±25  
.±±5  
(2.79±.5±8ꢀ  
(2.79±.5±8ꢀ  
(2.59ꢀ  
(.762ꢀ  
(.635ꢀ  
(.127ꢀ  
.11± +.±35 -±.2±  
(2.79 +.889 -.5±8ꢀ  
.11±±.±2±  
.1±2  
.±3±  
.±25  
.±±5  
(2.79±.5±8ꢀ  
(2.59ꢀ  
(.762ꢀ  
(.635ꢀ  
(.127ꢀ  
HOW TO ORDER  
CDR12  
BG  
101  
A
K
U
S
MIL Style  
CDR11, CDR12,  
CDR13, CDR14  
Capacitance  
EIA Capacitance Code in pF.  
Capacitance  
Tolerance Code  
B = .1 pF  
C = .25 pF  
D = .5 pF  
F = 1ꢀ  
Failure Rate  
Level  
M = 1.0ꢀ  
P = .1ꢀ  
First two digits = significant figures  
or “R” for decimal place.  
R = .01ꢀ  
S = .001ꢀ  
6
Third digit = number of zeros or  
after “R” significant figures.  
Termination  
Finish (Military  
Designations)  
Code  
G = 2ꢀ  
J = 5ꢀ  
K = 10ꢀ  
M = 20ꢀ  
Voltage  
Temperature  
Limits  
Rated Voltage  
Code  
M = Palladium/Silver  
(CDR11 & 13 only)  
N = Silver, Nickel, Gold  
(CDR11 & 13 only)  
S = Solder Coated, Final  
(CDR12 & 14 only)  
U = Base Metallization, Barrier Metal,  
Solder Coated.  
(Solder M.P. 200°C or less)  
(CDR12 & 14 only)  
W = Base Metallization, Barrier Metal,  
Tinned (Tin or Tin/Lead Alloy)  
(CDR12 & 14 only)  
A = 50V  
B = 100V  
C = 200V  
D = 300V  
E = 500V  
BG = +90 20 ppm/°C  
with and without  
rated voltage from  
-55°C to + 125°C  
BP = 0 30ppm/°C  
with and without  
rated voltage from  
-55°C to +125°C  
Y = 100ꢀ Tin  
Z = Base Metallization, Barrier Metal  
(TIn Lead Alloy With 4ꢀ Lead Min.)  
PACKAGING  
Standard Packaging = Waffle Pack (for T&R packaging see page 88)  
AQ11/12 maximum quantity per waffle pack is 100.  
AQ13/14 maximum quantity is 80.  
8±  
Microwave MLC’s  
CDR Series — MIL-PRF-55681 (RF/Microwave Chips)  
TABLE I: STYLES CDR11 AND CDR12 CAPACITOR CHARACTERISTICS  
Type  
Rated temperature  
Type  
Rated temperature  
Designation Capacitance Capacitance  
and  
WVDC  
Designation Capacitance Capacitance  
and  
WVDC  
1/  
in pF  
tolerance  
V/Temperature  
1/  
in pF  
tolerance  
V/Temperature  
CDR1 -B-±R1AB--  
CDR1 -B-±R2AB--  
CDR1 -B-±R3A---  
CDR1 -B-±R4A---  
CDR1 -B-±R5A---  
CDR1 -B-±R6A---  
CDR1 -B-±R7A---  
CDR1 -B-±R8A---  
CDR1 -B-±R9A---  
CDR1 -B-1R±A---  
CDR1 -B-1R1A---  
CDR1 -B-1R2A---  
CDR1 -B-1R3A---  
CDR1 -B-1R4A---  
CDR1 -B-1R5A---  
CDR1 -B-1R6A---  
CDR1 -B-1R7A---  
CDR1 -B-1R8A---  
CDR1 -B-1R9A---  
CDR1 -B-2R±A---  
CDR1 -B-2R1A---  
CDR1 -B-2R2A---  
CDR1 -B-2R4A---  
CDR1 -B-2R7A---  
CDR1 -B-3R±A---  
CDR1 -B-3R3A---  
CDR1 -B-3R6A---  
CDR1 -B-3R9A---  
CDR1 -B-4R3A---  
CDR1 -B-4R7A---  
CDR1 -B-5R1A---  
CDR1 -B-5R6A---  
CDR1 -B-6R2A---  
CDR1 -B-6R8A---  
CDR1 -B-7R5A---  
CDR1 -B-8R2A---  
CDR1 -B-9R1A---  
CDR1 -B-1±±A---  
CDR1 -B-11±A---  
CDR1 -B-12±A---  
CDR1 -B-13±A---  
CDR1 -B-15±A---  
CDR1 -B-16±A---  
CDR1 -B-18±A---  
CDR1 -B-2±±A---  
CDR1 -B-22±A---  
CDR1 -B-24±A---  
CDR1 -B-27±A---  
±.1  
±.2  
±.3  
±.4  
±.5  
±.6  
±.7  
±.8  
±.9  
1.±  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
1.9  
2.±  
2.1  
2.2  
2.4  
2.7  
3.±  
3.3  
3.6  
3.9  
4.3  
4.7  
5.1  
5.6  
6.2  
6.8  
7.5  
8.2  
9.1  
1±  
B
B
B, C  
B, C  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
5±  
5±  
5±  
5±  
5±  
5±  
5±  
5±  
5±  
5±  
5±  
5±  
5±  
5±  
5±  
5±  
5±  
5±  
5±  
5±  
5±  
5±  
5±  
5±  
5±  
5±  
5±  
5±  
5±  
5±  
5±  
5±  
5±  
5±  
5±  
5±  
5±  
5±  
5±  
5±  
5±  
5±  
5±  
5±  
5±  
5±  
5±  
5±  
CDR1 -B-3±±A---  
CDR1 -B-33±A---  
CDR1 -B-36±A---  
CDR1 -B-39±A---  
CDR1 -B-43±A---  
CDR1 -B-47±A---  
CDR1 -B-51±A---  
CDR1 -B-56±A---  
CDR1 -B-62±A---  
CDR1 -B-68±A---  
CDR1 -B-75±A---  
CDR1 -B-82±A---  
CDR1 -B-91±A---  
CDR1 -B-1±1A---  
CDR1 -B-111A---  
CDR1 -B-121A---  
CDR1 -B-131A---  
CDR1 -B-151A---  
CDR1 -B-161A---  
CDR1 -B-181A---  
CDR1 -B-2±1A---  
CDR1 -B-221A---  
CDR1 -B-241A---  
CDR1 -B-271A---  
CDR1 -B-3±1A---  
CDR1 -B-331A---  
CDR1 -B-361A---  
CDR1 -B-391A---  
CDR1 -B-431A---  
CDR1 -B-471A---  
CDR1 -B-511A---  
CDR1 -B-561A---  
CDR1 -B-621A---  
CDR1 -B-681A---  
CDR1 -B-751A---  
CDR1 -B-821A---  
CDR1 -B-911A---  
CDR1 -B-1±2A---  
3±  
33  
36  
39  
43  
47  
51  
56  
62  
68  
75  
82  
91  
1±±  
11±  
12±  
13±  
15±  
16±  
18±  
2±±  
22±  
24±  
27±  
3±±  
33±  
36±  
39±  
43±  
47±  
51±  
56±  
62±  
68±  
75±  
82±  
91±  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BP  
BP  
BP  
BP  
BP  
BP  
BP  
BP  
BP  
BP  
BP  
BP  
BP  
BP  
BP  
BP  
BP  
BP  
BP  
BP  
BP  
BP  
BP  
BP  
5±  
5±  
5±  
5±  
5±  
5±  
5±  
5±  
5±  
5±  
5±  
5±  
5±  
5±  
5±  
5±  
5±  
5±  
5±  
5±  
5±  
5±  
5±  
5±  
5±  
5±  
5±  
5±  
5±  
5±  
5±  
5±  
5±  
5±  
5±  
5±  
5±  
5±  
B, C, D  
B, C, J, K, M  
B, C, J, K, M  
B, C, J, K, M  
B, C, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
1±±±  
11  
12  
13  
15  
16  
18  
2±  
22  
1/Complete type designation will include additional symbols to indicate style,  
voltage-temperature limits, capacitance tolerance (where applicableꢀ, termina-  
tion finish (“M” or “N” for style CDR11, and “S”, “U” or “W” for style CDR12ꢀ  
and failure rate level.  
24  
27  
6
81  
Microwave MLC’s  
CDR Series — MIL-PRF-55681 (RF/Microwave Chips)  
TABLE II: STYLES CDR13 AND CDR14 CAPACITOR CHARACTERISTICS  
Type  
Rated temperature  
Type  
Rated temperature  
Designation Capacitance Capacitance  
and  
WVDC  
Designation Capacitance Capacitance  
and  
WVDC  
1/  
in pF  
tolerance  
V/Temperature  
1/  
in pF  
tolerance  
V/Temperature  
CDR1 -B-±R1*B--  
CDR1 -B-±R2*B--  
CDR1 -B-±R3*---  
CDR1 -B-±R4*---  
CDR1 -B-±R5*---  
CDR1 -B-±R6*---  
CDR1 -B-±R7*--  
CDR1 -B-±R8*---  
CDR1 -B-±R9*---  
CDR1 -B-1R±*---  
CDR1 -B-1R1*---  
CDR1 -B-1R2*---  
CDR1 -B-1R3*---  
CDR1 -B-1R4*---  
CDR1 -B-1R5*---  
CDR1 -B-1R6*---  
CDR1 -B-1R7*---  
CDR1 -B-1R8*---  
CDR1 -B-1R9*---  
CDR1 -B-2R±*---  
CDR1 -B-2R1*---  
CDR1 -B-2R2*--  
CDR1 -B-2R4*---  
CDR1 -B-2R7*---  
CDR1 -B-3R±*---  
CDR1 -B-3R3*---  
CDR1 -B-3R6*---  
CDR1 -B-3R9*---  
CDR1 -B-4R3*---  
CDR1 -B-4R7*---  
CDR1 -B-5R1*---  
CDR1 -B-5R6*---  
CDR1 -B-6R2*---  
CDR1 -B-6R8*---  
CDR1 -B-7R5*---  
CDR1 -B-8R2*---  
CDR1 -B-9R1*---  
CDR1 -B-1±±*---  
CDR1 -B-11±*---  
CDR1 -B-12±*---  
CDR1 -B-13±*---  
CDR1 -B-15±*---  
CDR1 -B-16±*---  
CDR1 -B-18±*---  
CDR1 -B-2±±*---  
CDR1 -B-22±*---  
CDR1 -B-24±*---  
CDR1 -B-27±*---  
CDR1 -B-3±±*---  
CDR1 -B-33±*---  
CDR1 -B-36±*---  
CDR1 -B-39±*---  
CDR1 -B-43±*---  
CDR1 -B-47±*---  
CDR1 -B-51±*---  
±.1  
±.2  
±.3  
±.4  
±.5  
±.6  
±.7  
±.8  
±.9  
1.±  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
1.9  
2.±  
2.1  
2.2  
2.4  
2.7  
3.±  
3.3  
3.6  
3.9  
4.3  
4.7  
5.1  
5.6  
6.2  
6.8  
7.5  
8.2  
9.1  
1±  
11  
12  
13  
15  
16  
18  
2±  
22  
24  
27  
3±  
33  
36  
39  
43  
47  
B
B
B, C  
B, C  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
B, C, D  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
2±±/5±±  
2±±/5±±  
2±±/5±±  
2±±/5±±  
2±±/5±±  
2±±/5±±  
2±±/5±±  
2±±/5±±  
2±±/5±±  
2±±/5±±  
2±±/5±±  
2±±/5±±  
2±±/5±±  
2±±/5±±  
2±±/5±±  
2±±/5±±  
2±±/5±±  
2±±/5±±  
2±±/5±±  
2±±/5±±  
2±±/5±±  
2±±/5±±  
2±±/5±±  
2±±/5±±  
2±±/5±±  
2±±/5±±  
2±±/5±±  
2±±/5±±  
2±±/5±±  
2±±/5±±  
2±±/5±±  
2±±/5±±  
2±±/5±±  
2±±/5±±  
2±±/5±±  
2±±/5±±  
2±±/5±±  
2±±/5±±  
2±±/5±±  
2±±/5±±  
2±±/5±±  
2±±/5±±  
2±±/5±±  
2±±/5±±  
2±±/5±±  
2±±/5±±  
2±±/5±±  
2±±/5±±  
2±±/5±±  
2±±/5±±  
2±±/5±±  
2±±/5±±  
2±±/5±±  
2±±/5±±  
2±±/5±±  
CDR1 -B-56±*---  
CDR1 -B-62±*---  
CDR1 -B-68±*---  
CDR1 -B-75±*---  
CDR1 -B-82±*---  
CDR1 -B-91±*---  
CDR1 -B-1±1*---  
CDR1 -B-111‡---  
CDR1 -B-121‡---  
CDR1 -B-131‡---  
CDR1 -B-151‡---  
CDR1 -B-161‡---  
CDR1 -B-181‡---  
CDR1 -B-2±1‡---  
CDR1 -B-221C---  
CDR1 -B-241C---  
CDR1 -B-271C---  
CDR1 -B-3±1C---  
CDR1 -B-331C---  
CDR1 -B-361C---  
CDR1 -B-391C---  
CDR1 -B-431C---  
CDR1 -B-471C---  
CDR1 -B-511B---  
CDR1 -B-561B---  
CDR1 -B-621B---  
CDR1 -B-681A---  
CDR1 -B-751A---  
CDR1 -B-821A---  
CDR1 -B-911A---  
CDR1 -B-1±2A---  
CDR1 -B-112A---  
CDR1 -B-122A---  
CDR1 -B-132A---  
CDR1 -B-152A---  
CDR1 -B-162A---  
CDR1 -B-182A---  
CDR1 -B-2±2A---  
CDR1 -B-222A---  
CDR1 -B-242A---  
CDR1 -B-272A---  
CDR1 -B-3±2A---  
CDR1 -B-332A---  
CDR1 -B-362A---  
CDR1 -B-392A---  
CDR1 -B-432A---  
CDR1 -B-472A---  
CDR1 -B-5±2A---  
CDR1 -B-512A---  
56  
62  
68  
75  
82  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BG, BP  
BP  
BP  
BP  
BP  
BP  
BP  
BP  
BP  
BP  
BP  
BP  
BP  
BP  
BP  
BP  
BP  
BP  
2±±/5±±  
2±±/5±±  
2±±/5±±  
2±±/5±±  
2±±/5±±  
2±±/5±±  
2±±/5±±  
2±±/3±±  
2±±/3±±  
2±±/3±±  
2±±/3±±  
2±±/3±±  
2±±/3±±  
2±±/3±±  
2±±  
2±±  
2±±  
2±±  
2±±  
2±±  
2±±  
2±±  
2±±  
1±±  
1±±  
1±±  
5±  
5±  
5±  
5±  
5±  
5±  
5±  
5±  
5±  
5±  
5±  
5±  
5±  
91  
1±±  
11±  
12±  
13±  
15±  
16±  
18±  
2±±  
22±  
24±  
27±  
3±±  
33±  
36±  
39±  
43±  
47±  
51±  
56±  
62±  
68±  
75±  
82±  
91±  
1±±±  
11±±  
12±±  
13±±  
15±±  
16±±  
18±±  
2±±±  
22±±  
24±±  
27±±  
3±±±  
33±±  
36±±  
39±±  
43±±  
47±±  
5±±±  
51±±  
B, C, D  
B, C, J, K, M  
B, C, J, K, M  
B, C, J, K, M  
B, C, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
F, G, J, K, M  
5±  
5±  
5±  
5±  
5±  
5±  
5±  
5±  
5±  
5±  
BP  
1/Complete type designation will include additional symbols to indicate style,  
voltage-temperature limits, capacitance tolerance (where applicableꢀ, termina-  
tion finish (“M” or “N” for style CDR13, and “S”, “U” or “W” for style CDR14ꢀ  
and failure rate level.  
6
51  
*C=2±±V; E=5±±V.  
‡C=2±±V; D=3±±V.  
82  
Microwave MLC’s  
Performance Curves  
TYPICAL Q vs. FREQUENCY  
TYPICAL ESR vs. FREQUENCY  
AQ11/12  
AQ11/12  
MIL-PRF-55681E - BG  
STANDARD - M  
MIL-PRF-55681E - BG  
STANDARD - M  
1±±±±  
1
1±±±  
Q
ESR (ohmsꢀ ±.1  
1±±  
±.±1  
1±  
1±±  
1±±±  
1±±  
1±±±  
Frequency (MHzꢀ  
Frequency (MHzꢀ  
AVX CORPORATION  
AVX CORPORATION  
1± Picofarad  
1 Picofarad  
1± Picofarad  
1±± Picofarad  
3.3 Picofarad  
1±± Picofarad  
TYPICAL ESR vs. CAPACITANCE  
AQ11/12  
TYPICAL Q vs. CAPACITANCE  
AQ11/12  
MIL-PRF-55681E - BG  
STANDARD - M  
MIL-PRF-55681E - BG  
STANDARD - M  
1
1±±±±  
1±±±  
1±±  
6
ESR (ohmsꢀ ±.1  
Q
±.±1  
1±  
1
1±  
1±±  
1
1±  
1±±  
Capacitance (pFꢀ  
Capacitance (pFꢀ  
AVX CORPORATION  
5±± MHz  
AVX CORPORATION  
5±± MHz  
25± MHz  
1±±± MHz  
25± MHz  
1±±± MHz  
83  
Microwave MLC’s  
Performance Curves  
TYPICAL Q vs. FREQUENCY  
AQ13/14  
TYPICAL ESR vs. FREQUENCY  
AQ13/14  
MIL-PRF-55681E - BG  
MIL-PRF-55681E - BG  
STANDARD - M  
STANDARD - M  
1±±±±  
1
1±±±  
Q
ESR (ohmsꢀ ±.1  
1±±  
±.±1  
1±  
1±±  
1±±±  
1±±  
1±±±  
Frequency (MHzꢀ  
Frequency (MHzꢀ  
AVX CORPORATION  
AVX CORPORATION  
15 Picofarad  
1 Picofarad  
1± Picofarad  
47 Picofarad  
33± Picofarad  
1 Picofarad  
1±± Picofarad  
TYPICAL Q vs. CAPACITANCE  
AQ13/14  
TYPICAL ESR vs. CAPACITANCE  
AQ13/14  
MIL-PRF-55681E - BG  
STANDARD - M  
MIL-PRF-55681E - BG  
STANDARD - M  
1±±±±  
1
6
1±±±  
1±±  
1±  
ESR (ohmsꢀ ±.1  
Q
±.±1  
1
1±  
1±±  
1
1±  
1±±  
Capacitance (pFꢀ  
Capacitance (pFꢀ  
AVX CORPORATION  
5±± MHz  
AVX CORPORATION  
5±± MHz  
25± MHz  
1±±± MHz  
25± MHz  
1±±± MHz  
84  
Microwave MLC’s  
Performance Curves  
TYPICAL ESR vs. FREQUENCY  
AQ11/12  
TYPICAL Q vs. FREQUENCY  
AQ11/12  
MIL-PRF-55681E - BP  
STANDARD - A  
MIL-PRF-55681E - BP  
STANDARD - A  
1
1±±±±  
1±±±  
ESR (ohmsꢀ ±.1  
Q
1±±  
±.±1  
1±  
1±±  
1±±±  
1±±  
1±±±  
Frequency (MHzꢀ  
Frequency (MHzꢀ  
AVX CORPORATION  
15 Picofarad  
AVX CORPORATION  
15 Picofarad  
1 Picofarad  
1±± Picofarad  
1 Picofarad  
1±± Picofarad  
TYPICAL Q vs. CAPACITANCE  
AQ11/12  
TYPICAL ESR vs. CAPACITANCE  
AQ11/12  
MIL-PRF-55681E - BP  
STANDARD - A  
MIL-PRF-55681E - BP  
STANDARD - A  
1±±±±  
1±±±  
1±±  
1
6
ESR (ohmsꢀ ±.1  
Q
1±  
±.±1  
1
1±  
1±±  
1
1±  
1±±  
Capacitance (pFꢀ  
Capacitance (pFꢀ  
AVX CORPORATION  
5±± MHz  
AVX CORPORATION  
5±± MHz  
25± MHz  
1±±± MHz  
25± MHz  
1±±± MHz  
85  
Microwave MLC’s  
Performance Curves  
TYPICAL ESR vs. FREQUENCY  
AQ13/14  
TYPICAL Q vs. FREQUENCY  
AQ13/14  
MIL-PRF-55681E - BP  
STANDARD - A  
MIL-PRF-55681E - BP  
STANDARD - A  
1
1±±±±  
1±±±  
ESR (ohmsꢀ ±.1  
Q
1±±  
±.±1  
1±  
1±±  
1±±±  
1±±  
1±±±  
Frequency (MHzꢀ  
Frequency (MHzꢀ  
AVX CORPORATION  
47 Picofarad  
AVX CORPORATION  
15 Picofarad  
15 Picofarad  
1±± Picofarad  
2 Picofarad  
1±± Picofarad  
TYPICAL Q vs. CAPACITANCE  
AQ13/14  
TYPICAL ESR vs. CAPACITANCE  
AQ13/14  
MIL-PRF-55681E - BP  
STANDARD - A  
MIL-PRF-55681E - BP  
STANDARD - A  
1±±±±  
1±±±  
1±±  
1
6
ESR (ohmsꢀ ±.1  
Q
1±  
±.±1  
1
1±  
1±±  
1
1±  
1±±  
Capacitance (pFꢀ  
Capacitance (pFꢀ  
AVX CORPORATION  
5±± MHz  
AVX CORPORATION  
5±± MHz  
25± MHz  
1±±± MHz  
25± MHz  
1±±± MHz  
86  
Microwave MLC’s  
Performance Curves  
6
F r e q u e n c y ( G H z ꢀ  
F r e q u e n c y ( G H z ꢀ  
87  
Microwave MLC’s  
Automatic Insertion Packaging  
TAPE & REEL: All tape and reel specifications are in compliance with EIA RS481 (equivalent to IEC 286 part 3ꢀ.  
“U” Series - 0603/0805/1210 Size Chips  
Sizes AQ11/12 through 13/14, CDR11/12 through 13/14.  
—8mm carrier  
—8mm carrier  
—7" reel: 0603 & 0805 0.40" thickness = 4000 pcs  
0805 . 0.040" thickness & 1210= 2000 pcs  
—13" reel: 0.075" thickness = 10,000 pcs  
—7" reel: 0.040" thickness = 2000 pcs  
0.075" thickness = 2000 pcs  
—13" reel: 0.075" thickness = 10,000 pcs  
REEL DIMENSIONS: millimeters (inches)  
Tape  
A
B*  
C
D*  
N
W2  
Max.  
W3  
W1  
Size(1) Max. Min.  
Min. Min.  
7.9 Min.  
(.311ꢀ  
(.567ꢀ 1±.9 Max.  
(.429ꢀ  
1.±  
8mm  
8.4 +-±.±  
14.4  
(.331+.±6±  
-±.±  
33±  
1.5 13.±±±.2± 2±.2  
5±  
(12.992ꢀ (.±59ꢀ (.512±.±±8ꢀ (.795ꢀ (1.969ꢀ  
11.9 Min.  
(.469ꢀ  
ꢀ (.724ꢀ 15.4 Max.  
(.6±7ꢀ  
12mm  
12.4 +-±2..±±  
18.4  
+.±76  
-±.±  
(.488  
Metric dimensions will govern.  
English measurements rounded and for reference only.  
(1ꢀ For tape sizes 16mm and 24mm (used with chip size 364±ꢀ consult EIA RS-481 latest revision.  
EMBOSSED CARRIER CONFIGURATION  
8 & 12 MM TAPE ONLY  
CONSTANT DIMENSIONS  
Tape  
Size  
8mm  
and  
D0  
E
P0  
P2  
T
T1  
G1  
G2  
Max.  
8.4 -+±±..±1±  
1.75 ± ±.1±  
4.± ± ±.1±  
2.± ± ±.±5  
±.6±± ±.1± ±.75 ±.75  
(.±59 +.±±4  
(.±69 ± .±±4ꢀ (.157 ± .±±4ꢀ (.±79 ± .±±2ꢀ (.±24ꢀ (.±±4ꢀ (.±3±ꢀ (.±3±ꢀ  
Max. Min. Min.  
-±.±  
12mm  
See  
See  
Note 3 Note 4  
VARIABLE DIMENSIONS  
Tape Size  
B1  
D1  
F
P1  
R
T2  
W
A0B0K0  
Max.  
Min.  
Min.  
See Note 6  
See Note 5  
See Note 2  
8.± +-±±..13  
6
4.55  
(.179ꢀ  
1.±  
(.±39ꢀ  
3.5 ± ±.±5  
(.138 ± .±±2ꢀ  
5.5 ± ±.±5  
(.217 ± .±±2ꢀ  
4.± ± ±.1±  
(.157 ± .±±4ꢀ  
4.± ± ±.1±  
(.157 ± .±±4ꢀ  
25  
(.984ꢀ  
3±  
(1.181ꢀ  
2.5 Max  
(.±98ꢀ  
6.5 Max  
(.256ꢀ  
8mm  
See Note 1  
See Note 1  
(.315 +.±12  
-.±±4ꢀ  
8.2  
(.323ꢀ  
1.5  
(.±59ꢀ  
12.± ± .3±  
(.472 ± .±12ꢀ  
12mm  
NOTES:  
3. G dimension is the flat area from the edge of the sprocket hole to either the  
outward deformation of the carrier tape between the embossed cavities or to  
the edge of the cavity whichever is less.  
1
1.  
A
0,  
B
0, and K are determined by the max. dimensions to the ends of the  
0
terminals extending from the component body and/or the body dimensions of  
the component. The clearance between the end of the terminals or body of the  
component to the sides and depth of the cavity (A0,  
B
0, and K ) must be within  
0
4. G dimension is the flat area from the edge of the carrier tape opposite the  
sprocket holes to either the outward deformation of the carrier tape between the  
embossed cavity or to the edge of the cavity whichever is less.  
2
0.05 mm (.002) min. and 0.50 mm (.020) max. The clearance allowed must also  
prevent rotation of the component within the cavity of not more than 20 degrees  
(see sketches C & D).  
5. The embossment hole location shall be measured from the sprocket hole  
controlling the location of the embossment. Dimensions of embossment  
location and hole location shall be applied independent of each other.  
2. Tape with components shall pass around radius “R” without damage. The  
minimum trailer length (Note 2 Fig. 3) may require additional length to provide R  
min. for 12mm embossed tape for reels with hub diameters approaching N min.  
(Table 4).  
6. B dimension is a reference dimension for tape feeder clearance only.  
1
88  
®
Hi-Q High RF Power  
MLC Surface Mount Capacitors  
For 600V to 4000V Application  
PRODUCT OFFERING  
®
Hi-Q , high RF power, surface mount MLC capacitors from AVX  
Corporation are characterized with ultra-low ESR and dissipation factor  
at high frequencies. They are designed to handle high power and  
high voltage levels for applications in RF power amplifiers, inductive  
heating, high magnetic field environments (MRI coils), medical and  
industrial electronics.  
HOW TO ORDER  
HQCC  
A
A
271  
J
A
T
1
A
AVX  
Voltage Temperature Capacitance Code  
Capacitance  
Tolerance  
F = 1ꢀ  
G = 2ꢀ  
J = 5ꢀ  
K = 10ꢀ  
M = 20ꢀ  
Test  
Termination  
Packaging  
1 = 7" Reel  
3 = 13" Reel  
9 = Bulk  
Special  
Code  
A = Standard  
Style  
600V = C Coefficient  
(2 significant digits  
+ no. of zeros)  
Examples:  
Level  
1 = Pd/Ag  
HQCC 1000V = A  
HQCE 1500V = S  
2000V = G  
C0G = A  
A = Standard T = Solderable  
Plate  
10 pF = 100  
2500V = W  
100 pF = 101  
1,000 pF = 102  
22,000 pF = 223  
3000V = H  
4000V = J  
DIMENSIONS  
millimeters (inches)  
HQCE  
L
STYLE  
HQCC  
W
(L) Length  
5.84 0.51  
9.4 0.51  
(0.230 0.020)  
(0.370 0.020)  
(W) Width  
6.35 0.51  
(0.250 0.020)  
9.9 0.51  
(0.390 0.020)  
T
(T) Thickness  
Max.  
3.3 max.  
(0.130 max.)  
3.3 max.  
(0.130 max.)  
(t) terminal  
0.64 0.38  
(0.025 0.015)  
0.64 0.38  
(0.025 0.015)  
t
DIELECTRIC PERFORMANCE CHARACTERISTICS  
6
Capacitance Range  
10pF to 6,800pF  
(25°C, 1.0 0.2 Vrms at 1kHz, for 1000 pF use 1MHz)  
1ꢀ, 2ꢀ, 5ꢀ, 10ꢀ, 20ꢀ  
0.1ꢀ Max (+25°C, 1.0 0.2 Vrms at 1kHz, for 1000 pF use 1MHz)  
-55°C to +125°C  
C0G: 0 30 ppm/°C (-55°C to +125°C)  
600, 1000, 1500, 2000, 2500, 3000, 4000VDC  
100K Mmin. @ +25°C and 500VDC  
10K Mmin. @ +125°C and 500VDC  
120ꢀ of rated WVDC  
Capacitance Tolerances  
Dissipation Factor 25°C  
Operating Temperature Range  
Temperature Characteristic  
Voltage Ratings  
Insulation Resistance  
Dielectric Strength  
HIGH VOLTAGE CAPACITANCE VALUES (pF)  
600  
1000  
WVDC  
1500  
WVDC  
2000  
WVDC  
min./max.  
2500  
WVDC  
min./max.  
3000  
WVDC  
min./max.  
4000  
WVDC  
min./max.  
Style  
WDC  
min./max.  
min./max.  
min./max.  
HQCC  
HQCE  
2,200 - 2,700  
5,600 - 6,800  
1,500 - 1,800  
3,300 - 4,700  
820 - 1,200  
470 - 680  
330 - 390  
10 - 270  
470-680  
2,200 - 2,700  
1,200 - 1,800  
820 - 1,000  
10-390  
89  
RF/Microwave  
NP0 Capacitors  
“U” Series  
Ceramic C±G (NP±ꢀ Microwave  
Multilayer Capacitors  
7
9±  
RF/Microwave C0G (NP0) Capacitors  
Ultra Low ESR, “U” Series, C0G (NP0) Chip Capacitors  
GENERAL INFORMATION  
are met on each value producing lot to lot uniformity.  
Sizes available are EIA chip sizes 0603, 0805, and 1210.  
“U” Series capacitors are C0G (NP0) chip capacitors spe-  
cially designed for “Ultra” low ESR for applications in the  
communications market. Max ESR and effective capacitance  
DIMENSIONS: inches (millimeters)  
0402  
0603  
0805  
1210  
A
A
E
A
A
E
C
B
B
C
B
B
C
C
D
D
D
D
D
D
E
inches (mm)  
Size  
0402  
0603  
0805  
1210  
A
B
C
D
N/A  
E
N/A  
0.039 0.004 (1.00 0.1)  
0.060 0.010 (1.52 0.25) 0.030 0.010 (0.ꢀ6 0.25)  
0.0ꢀ9 0.008 (2.01 0.2)  
0.126 0.008 (3.2 0.2)  
0.020 0.004 (0.50 0.1)  
0.024 (0.6) max  
0.036 (0.91) max  
0.010 0.005 (0.25 0.13)  
0.030 (0.ꢀ6) min  
0.020 (0.51) min  
0.049 0.008 (1.25 0.2)  
0.098 0.008 (2.49 0.2)  
0.040 0.005 (1.02 0.12ꢀ) 0.020 0.010 (0.51 0.254)  
0.050 0.005 (1.2ꢀ 0.12ꢀ) 0.025 0.015 (0.635 0.381) 0.040 (1.02) min  
HOW TO ORDER  
0805  
1
U
100  
J
A
T
2
A
Case Size  
0402  
Dielectric =  
Ultra Low  
ESR  
Capacitance  
Tolerance  
Code  
Termination  
T= Plated Ni  
and Tin  
Special  
Code  
A = Standard  
0603  
0805  
1210  
B = 0.1pF  
C = 0.25pF  
D = 0.5pF  
F = 1%  
G = 2%  
J = 5%  
K = 10%  
M = 20%  
Voltage  
Code  
3 = 25V  
5 = 50V  
1 = 100V  
2 = 200V  
Failure Rate  
Code  
Packaging  
Code  
2 = ꢀ" Reel  
4 = 13" Reel  
9 = Bulk  
A = Not  
Capacitance  
Applicable  
EIA Capacitance Code in pF.  
First two digits = significant figures  
or “R” for decimal place.  
Third digit = number of zeros or  
after “R” significant figures.  
ELECTRICAL CHARACTERISTICS  
Dielectric Working Voltage (DWV):  
7
Capacitance Values and Tolerances:  
Size 0402 - 0.2 pF to 22 pF @ 1 MHz  
Size 0603 - 1.0 pF to 100 pF @ 1 MHz  
Size 0805 - 1.6 pF to 160 pF @ 1 MHz  
Size 1210 - 2.4 pF to 1000 pF @ 1 MHz  
250% of rated WVDC  
Equivalent Series Resistance Typical (ESR):  
0402 - See Performance Curve, page 92  
0603 - See Performance Curve, page 92  
0805 - See Performance Curve, page 92  
1210 - See Performance Curve, page 92  
Temperature Coefficient of Capacitance (TC):  
0 30 ppm/ꢁC (-55ꢁ to +125ꢁC)  
Marking: Laser marking EIA J marking standard  
(except 0603) (capacitance code and  
tolerance upon request).  
Insulation Resistance (IR):  
1012 min. @ 25ꢁC and rated WVDC  
1011 min. @ 125ꢁC and rated WVDC  
Working Voltage (WVDC):  
MILITARY SPECIFICATIONS  
Size  
Working Voltage  
Meets or exceeds the requirements of MIL-C-55681  
0402 - 50, 25 WVDC  
0603 - 200, 100, 50 WVDC  
0805 - 200, 100 WVDC  
1210 - 200, 100 WVDC  
91  
RF/Microwave C0G (NP0) Capacitors  
Ultra Low ESR, “U” Series, C0G (NP0) Chip Capacitors  
CAPACITANCE RANGE  
Size  
Cap (pF) Tolerance 0402 0603 0805 1210  
Size  
Cap (pF) Tolerance 0402 0603 0805 1210  
Size  
Size  
Cap (pF) Tolerance 0402 0603 0805 1210  
Available  
Available  
Available  
Available  
Cap (pF) Tolerance 0402 0603 0805 1210  
7.5  
8.2  
9.1  
10  
11  
12  
13  
15  
18  
20  
22  
24  
27  
30  
33  
36  
39  
43  
47  
51  
56  
68  
75  
82  
91  
B,C,J,K,M 50V 200V 200V 200V  
100  
110  
120  
130  
140  
150  
160  
180  
200  
220  
270  
300  
330  
360  
390  
430  
470  
510  
560  
620  
680  
750  
820  
910  
F,G,J,K,M N/A 100V 200V 200V  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
B,C  
50V N/A N/A N/A  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
1.9  
2.0  
2.1  
2.2  
2.4  
2.7  
3.0  
3.3  
3.6  
3.9  
4.3  
4.7  
5.1  
5.6  
6.2  
6.8  
B,C,D  
50V 200V 200V 200V  
50V  
B,C,J,K,M  
F,G,J,K,M  
200V  
B,C  
100V  
B,C,D  
50V  
N/A 100V  
N/A  
B,C,D  
100  
50V  
N/A  
100  
B,C,D  
B,C,J,K,M  
F,G,J,K,M  
1000 F,G,J,K,M  
ULTRA LOW ESR, “U” SERIES  
TYPICAL ESR vs. FREQUENCY  
0402 “U” SERIES  
TYPICAL ESR vs. FREQUENCY  
0603 “U” SERIES  
1
1
10 pF  
15 pF  
3.3 pF  
3.9 pF  
4.7 pF  
5.1 pF  
6.8 pF  
10.0 pF  
15.0 pF  
0.1  
0.1  
0.01  
0.01  
2500  
2500  
0
0
500  
1000  
Frequency (MHz)  
2000  
500  
1000  
Frequency (MHz)  
2000  
1500  
1500  
TYPICAL ESR vs. FREQUENCY  
1210 “U” SERIES  
TYPICAL ESR vs. FREQUENCY  
0805 “U” SERIES  
7
1
1
100 pF  
10.0 pF  
10 pF  
100 pF  
0.1  
0.1  
300 pF  
0.01  
0.01  
2500  
0
0
500  
1000  
2000  
500  
1000  
Frequency (MHz)  
2000  
1500  
1500  
Frequency (MHz)  
ESR Measured on the Boonton 34A  
92  
RF/Microwave C0G (NP0) Capacitors  
Ultra Low ESR, “U” Series, C0G (NP0) Chip Capacitors  
7
F r e q u e n c y ( G H z )  
93  
RF/Microwave  
AQ 12 & 14 and “U” Series  
Designer Kits  
8
94  
Designer Kits  
Tuning Kits: AQ12/AQ14 Series  
TUNING KITS  
Solder Plated, Nickel Barrier  
Porcelain (+90)  
Ceramic (NP0)  
AQ12  
Kit 1500 UZ  
AQ14  
Kit 2500 UZ  
AQ12  
Kit 1501 UZ  
AQ14  
Kit 2501 UZ  
Capacitor  
Value pF  
Capacitor  
Value pF  
Capacitor  
Value pF  
Capacitor  
Value pF  
Tolerance*  
Tolerance*  
Tolerance*  
Tolerance*  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
1.9  
2.0  
2.1  
2.2  
2.4  
2.7  
3.0  
3.3  
3.6  
3.9  
4.3  
4.7  
5.1  
5.6  
6.2  
6.8  
7.5  
8.2  
9.1  
10.0  
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
C
C
C
C
C
C
C
C
J
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
1.9  
2.0  
2.1  
2.2  
2.4  
2.7  
3.0  
3.3  
3.6  
3.9  
4.3  
4.7  
5.1  
5.6  
6.2  
6.8  
7.5  
8.2  
9.1  
10.0  
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
C
C
C
C
C
C
C
C
J
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
1.9  
2.0  
2.1  
2.2  
2.4  
2.7  
3.0  
3.3  
3.6  
3.9  
4.3  
4.7  
5.1  
5.6  
6.2  
6.8  
7.5  
8.2  
9.1  
10.0  
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
C
C
C
C
C
C
C
C
J
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
1.9  
2.0  
2.1  
2.2  
2.4  
2.7  
3.0  
3.3  
3.6  
3.9  
4.3  
4.7  
5.1  
5.6  
6.2  
6.8  
7.5  
8.2  
9.1  
10.0  
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
C
C
C
C
C
C
C
C
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
38± Capacitors 1± each of 38 values. All chips are laser marked.  
*Tolerance: B =±±.1pF, C =±±.25pF, J =±5ꢁ.  
8
95  
Designer Kits  
Evaluation Kits: AQ12/AQ14 Series  
EVALUATION KITS  
Solder Plated, Nickel Barrier  
Porcelain (+90)  
Ceramic (NP0)  
AQ12  
AQ14  
AQ12  
AQ14  
Kit 1000 UZ  
Kit 2000 UZ  
Kit 1001 UZ  
Kit 2001 UZ  
Capacitor  
Capacitor  
Capacitor  
Capacitor  
Value pF  
Tolerance*  
Value pF  
Tolerance*  
Value pF  
Tolerance*  
Value pF  
Tolerance*  
.5  
B
B
B
B
B
B
B
C
C
C
C
C
C
C
C
J
1.0  
B
B
B
B
B
B
C
C
C
C
C
C
C
C
C
C
C
J
.5  
B
B
B
B
B
B
C
C
C
C
C
C
C
C
J
1.0  
B
B
B
B
B
C
C
C
C
C
C
C
C
C
C
C
J
1.0  
1.2  
1.0  
1.5  
1.2  
1.5  
1.5  
1.8  
1.5  
1.8  
1.8  
2.0  
1.8  
2.0  
2.0  
2.2  
2.0  
2.2  
2.2  
2.4  
2.2  
2.4  
2.4  
2.7  
2.4  
2.7  
2.7  
3.0  
2.7  
3.0  
3.0  
3.3  
3.0  
3.3  
3.3  
3.6  
3.3  
3.6  
3.6  
3.9  
3.6  
3.9  
3.9  
4.3  
3.9  
4.3  
4.3  
4.7  
4.3  
4.7  
4.7  
5.1  
4.7  
5.1  
6.8  
5.6  
6.8  
5.6  
8.2  
J
6.2  
8.2  
J
6.2  
10.0  
12.0  
15.0  
22.0  
27.0  
33.0  
39.0  
47.0  
56.0  
68.0  
82.0  
100.0  
470.0  
1000.0  
J
6.8  
10.0  
12.0  
15.0  
18.0  
22.0  
27.0  
33.0  
39.0  
47.0  
56.0  
68.0  
82.0  
100.0  
J
6.8  
J
8.2  
J
J
8.2  
J
J
10.0  
12.0  
15.0  
22.0  
27.0  
33.0  
39.0  
47.0  
56.0  
68.0  
82.0  
100.0  
120.0  
150.0  
180.0  
220.0  
240.0  
270.0  
330.0  
390.0  
470.0  
560.0  
680.0  
820.0  
1000.0  
2700.0  
5100.0  
J
J
10.0  
12.0  
15.0  
18.0  
22.0  
27.0  
33.0  
39.0  
47.0  
56.0  
68.0  
82.0  
100.0  
120.0  
150.0  
180.0  
220.0  
240.0  
270.0  
330.0  
390.0  
470.0  
560.0  
680.0  
820.0  
1000.0  
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
3±± Capacitors 1± each of 3± values.  
All chips are laser marked.  
3±± Capacitors 1± each of 3± values.  
All chips are laser marked.  
J
J
J
J
*Tolerance: B = ±±.1 pF, C = ±±.25  
pF, J = ±5ꢁ.  
*Tolerance: B = ±±.1 pF, C = ±±.25  
pF, J = ±5ꢁ.  
J
J
J
J
J
K
K
K
K
K
K
K
K
K
K
J
K
K
K
K
K
K
K
K
45± Capacitors 1± each of 45 values.  
All chips are laser marked.  
45± Capacitors 1± each of 45 values.  
All chips are laser marked.  
*Tolerance: B = ±±.1 pF, C = ±±.25  
pF, J = ±5ꢁ, K = ±1±ꢁ  
*Tolerance: B = ±±.1 pF, C = ±±.25  
pF, J = ±5ꢁ, K = ±1±ꢁ  
NOTE: Order by Kit Number  
Example: Kit 1±±± UZ  
8
96  
Designer Kits  
Communication Kits “U” Series  
“U” SERIES KITS  
Solder Plated, Nickel Barrier  
0402  
0603  
Kit 5000 UZ*  
Kit 4000 UZ**  
Cap.  
Value  
pF  
Cap.  
Tol.† Value  
pF  
Cap.  
Value  
pF  
Cap.  
Tol.† Value  
pF  
Tol.†  
Tol.†  
0.5  
1.0  
1.5  
1.8  
2.2  
2.4  
3.0  
3.6  
B
B
B
B
B
B
B
B
4.7  
5.6  
6.8  
B
B
B
B
J
J
J
1.0  
1.2  
1.5  
1.8  
2.0  
2.4  
2.7  
3.0  
3.3  
3.9  
4.7  
5.6  
.25pF  
.25pF  
.25pF  
.25pF  
.25pF  
.25pF  
.25pF  
.25pF  
.25pF  
.25pF  
.25pF  
.25pF  
6.8  
7.5  
8.2  
.25pF  
.25pF  
.25pF  
5ꢀ  
5ꢀ  
5ꢀ  
5ꢀ  
5ꢀ  
5ꢀ  
5ꢀ  
8.2  
10.0  
12.0  
15.0  
18.0  
22.0  
27.0  
33.0  
39.0  
47.0  
10.0  
12.0  
15.0  
* 150 Capacitors 10 each of 15 values.  
5ꢀ  
5ꢀ  
** 240 Capacitors 10 each of 24 values.  
0805  
1210  
Kit 3000 UZ***  
Kit 3500 UZ***  
Cap.  
Value  
pF  
Cap.  
Tol.† Value  
pF  
Cap.  
Value  
pF  
Cap.  
Value  
pF  
Cap.  
Tol.† Value  
pF  
Cap.  
Value  
pF  
Tol.†  
Tol.†  
Tol.†  
Tol.†  
1.0  
1.5  
2.2  
2.4  
2.7  
3.0  
3.3  
3.9  
4.7  
5.6  
C
C
C
C
C
C
C
C
C
C
7.5  
8.2  
9.1  
10.0  
12.0  
15.0  
18.0  
22.0  
24.0  
27.0  
C
C
C
J
J
J
J
J
J
J
33  
36  
39  
47  
56  
68  
82  
100  
130  
160  
J
J
J
J
J
J
J
J
J
J
2.2  
2.7  
4.7  
5.1  
6.8  
8.2  
9.1  
10  
C
C
C
C
C
C
C
J
18  
20  
24  
27  
30  
36  
39  
47  
51  
56  
J
J
J
J
J
J
J
J
J
J
68  
82  
J
J
J
J
J
J
J
J
J
J
100  
120  
130  
240  
300  
390  
470  
680  
13  
15  
J
J
*** 300 Capacitors 10 each of 30 values.  
Tolerance – B = 0.1pꢀ  
C = 0.25pꢀ  
J = 5ꢁ  
8
97  
Introduction  
to  
Microwave Capacitors  
9
98  
Introduction to  
Microwave Capacitors  
Microwave Capacitors in MICs  
The top side of the capacitor should be completely metal-  
lized so that the bond wire from the FET to the edge of the  
capacitor is minimized.  
Typical Microwave Circuit Applications  
Microwave MLC, SLC, or Thin-Film capacitor applications in  
MIC circuits can be grouped into the following categories:  
The height of the capacitor must be less than or equal to the  
height of the FET, usually about 0.005 inches. If the capaci-  
tor is higher than the FET, the capacitor will interfere with the  
bonding tool when wire bonding to the FET.  
• DC Block (in series with an MIC transmission line)  
• RF Bypass (in shunt with transmission lines)  
• Source Bypass (in shunt with active device)  
• Impedance Matching  
Impedance Matching  
The impedance matching application is to use the chip  
capacitor to provide the required reactance at a specific  
point in the circuit.  
This chapter discusses these applications and the perfor-  
mance parameters of microwave capacitors affecting these  
applications.  
This is usually the most critical application in terms of the  
capacitor maintaining a tight tolerance over temperature and  
from unit-to-unit.  
DC Block  
In the DC block application, the chip capacitor is placed in  
series with the transmission line to prevent the DC voltage  
from one circuit from affecting another circuit.  
The other applications only require that the capacitance for  
the DC block and RF bypass maintains a low reactance and  
the tolerance can be as much as 50ꢀ. Whereas the imped-  
ance matching function often requires 1ꢀ tolerance.  
The capacitance is chosen so that the reactance is only a  
fraction of an ohm at the lowest microwave frequency of  
interest.  
In general, microwave capacitors should have the following  
properties:  
The largest value capacitor is used as long as the self-resonant  
frequency is still much higher than the highest frequency of  
interest.  
• Low-loss  
• Operate very much below the self-resonant frequency  
RF Bypass  
• The power handling capability should be commensurate  
with the expected power performance of the circuit  
The RF bypass application is used to effectively short out the  
RF to ground. The capacitor value is also picked to be as  
large as possible without approaching the self-resonance of  
the capacitor.  
• Capable of wire bonding and gap welding  
• Low variation of capacitance over temperature  
• Low unit-to-unit variations in capacitance  
• Low dimensional variations from unit-to-unit  
Typical SLC applications in MIC circuits are shown in:  
Source Bypass  
The source bypass application is the same as the RF bypass  
except the capacitor is used in conjunction with an active  
device.  
In this application the chip capacitor is butted up to the  
source of the microwave FET device mounted on the MIC  
circuit. This is done to minimize the length of the wire bond  
from the source of the FET to the capacitor. The shorter the  
wire bond, the lower the corresponding inductance.  
RF  
IN  
R
C
C
D
D
SIMPLIFIED RF SPECTRUM  
5±± MHz  
DISTRIBUTED NET  
LUMPED NET  
C
6± cm  
3 GHz  
WAVEGUIDE  
SYSTEMS  
COAXIAL  
SYSTEMS  
D
C
C
R
D
RF  
OUT  
R
1± cm  
D
MF. HF  
VHF  
UHF  
SHF. EHF  
BIAS  
Figure 2. Typical MIC Microwave Attenuator Hybrid with SLC’s.  
“C” indicates SLC locations.  
3± MHz  
1± m  
3 MHz  
1±± m  
AM  
3±± MHz  
1 m  
3±± KHz  
1 km  
3 GHz  
1± cm  
3± GHz  
1 cm  
9
FM  
SATELLITE  
(COMMERCIALꢀ  
BROADCAST  
BROADCAST  
Figure 1  
99  
Introduction to  
Microwave Capacitors  
Microwave Parameters  
Scattering Parameters  
return loss can be related to the reflection coefficient and  
VSWR:  
Generally, transmission and reflections coefficient measure-  
ments completely characterize any black box or network.  
Transmission and reflections parameters — attenuation  
(gain), phase shift, and complex impedance — can be  
described in terms of a set of linear parameters called  
“scattering” or “s” parameters. Knowing these characteristic  
parameters, one can predict the response of cascaded  
or parallel networks accurately. Unlike y or h parameters  
which require short circuit and open circuit terminations, “s”  
parameters are determined with the input and output ports  
terminated in the characteristic impedance of the transmis-  
sion line which is a much more practical condition to obtain  
at RF and microwave frequencies.  
Eq. 2. RL (dB) = 10 log (Pinc/Pref)  
*
= 20 log (Einc/Eref) = 20 log (1/Rho)  
*
*
Eq. 3. Rho = (VSWR - 1)/(VSWR + 1)  
Eq. 4. VSWR = (1 + Rho)/(1 - Rho)  
where Rho = reflection coefficient  
RL = return loss  
Pinc = power incident  
Pref = power reflected  
Einc = voltage incident  
Eref = voltage reflected  
VSWR = voltage standing wave ratio  
To summarize, “s” parameters are more useful at microwave  
frequencies because:  
By the above equation, when the reflection coefficient is 1,  
the return loss is zero. In this case, no signal is lost and all  
the signal incident upon the discontinuity was returned to the  
source. As the reflection coefficient approaches zero, the  
return loss approaches infinity. That is, the more perfect the  
load, the less the reflection from that load.  
1. Equipment to measure total voltage and total currents  
at the ports of the networks is not readily available.  
2. Short and open circuits are difficult to achieve over a  
broad band of frequencies because of lead inductance  
and capacitance. Furthermore, these measurements  
typically require tuning stubs separately adjusted at  
each frequency to reflect short and open circuits to the  
device terminals, and this makes the process inconve-  
nient and tedious.  
The return loss can be improved by an attenuator.  
Assume that we connect a perfectly matched 3 dB attenua-  
tor into a short circuit as shown in Figure 3.  
PINC  
3. Active devices such as transistors and negative resis-  
tance diodes are very often not short- or open-circuit  
stable.  
SHORT CIRCUIT  
PREF  
3 dB ATTEN  
There are four scattering parameters for a two-port network:  
S11, S12, S21, and S22.  
PREF  
____  
PINC  
= -6 dB  
S11 is the reflection coefficient at the input port with the  
output port terminated in a 50 ohm load.  
Figure 3  
The indicated 100 mw is decreased to 50 mw at the output  
of the 3 dB attenuator. This 50 mw is reflected from the short  
circuit back through the attenuator in the reverse direction  
and one-half of this reflected power is lost in the 3 dB atten-  
uator. The reflected power at the input is 25 mw. Notice the  
return loss is equal to twice the attenuation because it is the  
“round trip” loss. This example shows that VSWR is  
decreased when attenuation exists on a transmission line  
and also that a high VSWR can be decreased by placing an  
attenuator in the line.  
S12 is the reverse transmission coefficient in a 50 ohm  
system.  
S21 is the forward transmission coefficient in a 50 ohm  
system.  
S22 is the reflection coefficient at the output port with the  
input port terminated into a 50 ohm load.  
The reflection coefficients can be directly related to the  
impedance of the device by the equation:  
Eq.1. ZIN/ZO = (1 + S11)/(1 - S11)  
where ZIN= input impedance  
ZO = characteristic impedance of  
the transmission line  
Mismatch Loss  
Mismatch loss is a measure of power loss caused by reflec-  
tion. It is the ratio of incident power to the difference between  
incident and reflected power and is expressed in dBs as  
follows:  
This equation also defines the Smith Chart.  
Return Loss  
Eq. 5. Mismatch loss (dB) = 10 log  
*
Return loss is the ratio of the incident power to the reflected  
power at a point on the transmission line and is expressed in  
decibels. The reflected power from a discontinuity is  
expressed as a certain number of decibels below the inci-  
dent power upon the discontinuity. It can be shown that  
[Pinc/(Pinc - Pref)]  
= 10 log  
*
[1/(1-Rho = 2)]  
9
1±±  
Introduction to  
Microwave Capacitors  
Microwave Parameters  
(1)  
(2)  
(3)  
(4)  
(5)  
(6)  
(7)  
N
GPC-7  
SMA  
SMA  
GPC-7  
GPC-7  
SWR  
AUTOTESTING  
SWEEP  
GENERATOR  
GPC-7  
TO SMA  
GPC-7  
TO SMA  
DUT  
DET  
ATTEN  
(8)  
SCALAR  
ANALYZER  
TRANSMISSION  
REFLECTION  
(1ꢀ Wiltron 6647A 1±MHz - 18GHz sweepers  
(2ꢀ Wiltron 56±-97-A5±  
Test set-up for:  
______________  
(3ꢀ OSM 2±82-27±±-±±  
(4ꢀ Device under test  
(1ꢀ Insertion loss  
(2ꢀ VSWR  
(5ꢀ OSM 2±82-27±±-±±  
(6ꢀ OSM 7±82-6193-1±  
(7ꢀ Wiltron 56±-7A5±  
Figure 4  
The mismatch loss for various values of VSWR is tabulated  
as follows:  
mismatch losses due to the two VSWRs to a small fraction  
of the expected insertion loss of the DUT.  
In using the scalar network analyzer it is a temptation to nor-  
malize the amplitude response regardless what the actual  
response is during calibration. It is advisable to eliminate the  
amplitude ripple first before normalizing the scalar analyzer.  
One way is to make use of the fact that VSWRs can be  
improved by the use of matched attenuators. Often, 10 dB  
attenuators are placed before and after the DUT to provide a  
minimum of 20 dB return loss which corresponds to source  
and load VSWRs of less than 1.20:1. This will reduce the  
uncertainties due to mismatch losses to less than 0.02 dB.  
Table I  
VSWR  
1.00  
1.20  
1.40  
1.50  
1.70  
2.00  
2.50  
3.00  
Mismatch Loss  
0.00 dB  
0.04 dB  
0.12 dB  
0.18 dB  
0.30 dB  
0.51 dB  
0.88 dB  
1.25 dB  
Return Loss Measurement  
Insertion Loss Measurement  
The return loss is measured by the following method: The  
test port is terminated by a short circuit so that all the inci-  
dent power is reflected. A detector on the bridge measures  
this power and this power is used as the reference for the  
incident power. The test port is then terminated by the DUT  
and the reflected power now measured. The difference  
between the power levels is the return loss.  
Insertion loss is measured by the substitution method. The  
insertion loss of the measurement system is used as a refer-  
ence. Then the DUT (Device Under Test) is inserted into the  
setup and the new insertion loss is measured. The difference  
between the two losses is the insertion loss of the DUT.  
The insertion loss is measured using the test setup as shown  
in Figure 5.  
SWR BRIDGE  
In order to accurately measure the insertion loss, source  
VSWR and load VSWR must be extremely Iow. It is assumed  
during calibration (loss of the measurement system with  
the DUT removed from the test setup) that the VSWR of the  
generator and the load does not contribute any mismatch  
losses. As discussed in the section on mismatch loss, any  
VSWR above 1.2:1 may cause a minimum error of 0.04 dB.  
In addition, the two VSWRs may be additive or subtractive  
depending on the phasing of the reflections. For example,  
source and load VSWRs of 1.2:1 can add to create an error  
of 0.08 dB. The mismatches usually exhibit themselves as  
amplitude ripple as a function of frequency. It is important  
when measuring low insertion losses that precautions are  
taken to ensure low source and load VSWRs and to keep the  
INCIDENT  
POWER  
DETECTOR  
9
Figure 5. Return Loss Measurement:  
Establishing a Reference  
1±1  
Introduction to  
Microwave Capacitors  
Microwave Parameters  
Note that the insertion loss and return loss can be measured  
simultaneously by using the dual trace feature of the Wiltron  
Scalar Analyzer. Furthermore, the two measurements can be  
done by using a controller such as the HP85 computer for  
semi-automatic testing.  
SWR BRIDGE  
INCIDENT  
INPUT  
5± OHM  
TERMINATION  
DUT  
REFLECTED  
The calibration for 0 dB return loss can be improved by aver-  
aging the short circuit and open circuit reflected powers.  
Since the phase difference is 180 degrees, the average  
closely approximates the actual full reflection.  
DETECTOR  
Decibels  
DUT IN PLACE  
The decibel, abbreviated “dB,” is one-tenth of the interna-  
tional transmission unit known as the “bel.” The origin of the  
bel is the logarithm to the base 10 of the power ratio. It is  
the power to which the number 10 must be raised in order  
to equal the given number. The number 10 is raised to the  
second power, or squared, in order to get 100. Therefore,  
the log of 100 is 2.  
Figure 6  
• All incident power is reflected at the short circuit.  
• The detector measures the reflected power.  
• An SWR bridge usually has a directivity of 35 to 40 dB.  
In other words, only a minute fraction of the incident power  
reaches the detector (the dotted line path) that is not  
reflected off the short circuit.  
The decibel is expressed mathematically by the equation:  
Eq. 6 dB = 10 * log (P /P )  
1
2
• The DUT is substituted for the short circuit and the oppo-  
site port is terminated by a matched termination (50 ohms).  
P2 = larger power  
P1 = lower power  
• The reflected power depends on the DUT and is sensed by  
the detector.  
The use of log tables can be avoided in practical applications  
where exact values of the power are not required. One only  
needs to know that a factor of 2 is equal to 3 dB and a fac-  
tor of 10 is equal to 10 dB and the rest of the conversions  
are derived from these two relationships. The use of dBs  
reduces multiplication into an addition. For example:  
• The return loss is the difference between this reflected  
power and that measured with a reference short circuit.  
• A significant improvement in calibrating a 0 dB return loss  
reference by averaging the short circuit and open circuit  
reflected powers.  
3dB =  
6dB = 2 x 2  
2
4
=
• The dotted line in the figure below shows the reflections  
due to an open circuit.  
9dB = 2 x 2 x 2 =  
10dB =  
20dB =  
8
10  
100  
• The solid line in the figure below shows the reflections due  
to a short circuit.  
The technique is based on the fact that 3, 6, and/or 9 dB  
can be added or subtracted (in some combination) to any  
decibel value. Adding or subtracting 10 to a decibel value  
simply multiplies or divides the number by ten. Examples:  
• Since the phase difference between short circuit and open  
circuit is 180 degrees.  
• By taking the average between these two voltages, the  
actual full reflection is very closely approximated.  
1. 17dB = 20dB - 3dB  
20dB is 10dB + 10dB or is equal to 100.  
3dB is equal to 2  
AVERAGING THE SHORT CIRCUIT AND OPEN CIRCUIT  
REFERENCES FOR HIGHER ACCURACY  
Therefore, 20 dB - 3dB = 100/2 = 50  
1
A
B
C
B
2. 36dB = 30dB + 6dB  
1000 x 4 = 4000  
SHORT  
1
C
OPEN  
±
1
A
Decibel:  
E
The decibel is not a unit of power but merely is a logarithmic  
expression of a ratio of two numbers. The unit of power may  
be expressed in terms of dBm, where “m” is the unit, mean-  
ing above or below one milliwatt. Since one mw is neither  
above nor below 1 mw, 1 mw= 0 dBm.  
ACTUAL  
FULL  
REFLECTION  
f
1
f
2
PREFERRED REFLECTION CALIBRATION  
Nepers:  
Figure 7  
An alternate unit called the neper is defined in terms of the  
logarithm to the base “e.” e = 2.718.  
9
1 neper = 8.686dB  
1dB = 0.1151 neper  
1±2  
Introduction to  
Microwave Capacitors  
Electrical Model  
Figures 9 and 10 also show the point of series resonance (LS  
in series with C), and parallel resonance (LS in parallel with  
Capacitance  
Microwave chip capacitors, although closely approx-  
imating an ideal capacitor, nonetheless also contain  
parasitic elements that are important at microwave fre-  
quencies. The equivalent circuit is shown below:  
CP).  
RS QP2  
INDUCTIVE  
LS  
C
RS  
LS  
RS  
P  
Z (ꢀ  
S  
RS  
1
C  
___  
1
CP  
___  
CP  
CAPACITIVE  
Figure 8. Equivalent Circuit of a  
Microwave Capacitor  
RS QP2  
where, C = desired capacitance  
LS = parasitic series inductance  
RS = series resistance  
Figure 9. SLC Impedance Magnitude vs. Frequency  
SERIES RESONANCE  
j5±  
j1±±  
j25  
j15±  
CP = parasitic parallel capacitance,  
j1±  
j25±  
Rp, the parallel resistance is not shown as it is of concern  
only at dc and low frequencies.  
PARALLEL  
RESONANCE  
25  
1±  
5±  
1±± 15± 25± 5±±  
±
The primary capacitance, C, is typically determined by mea-  
surement at 1 MHz where the effects of Rs, Ls, and Cp  
become negligible compared to the reactance of C. The  
value of C determined at this low frequency is also valid  
at microwave frequencies when the dielectric constant has  
a very low variation versus frequency, as is typical in the  
modern dielectrics employed in microwave capacitors.  
-j1±  
-j25±  
-j15±  
-j1±±  
-j25  
-j5±  
COORDINATES IN OHMS  
FREQUENCY IN GHz  
The equivalent impedance of the capacitor at any frequency is:  
Figure 10. SLC Impedance on Smith Chart  
1
1
Eq. 7. Zs =  
Because there is always some parasitic inductance associat-  
ed with capacitors, there will be a frequency at which the  
inductive reactance will equal that of the capacitor. This is  
known as the series resonant frequency (SRF). At the SRF,  
the capacitor will appear as a small resistor (RS). The trans-  
mission loss through a series mounted capacitor at its series  
resonant frequency will be low.  
sCp +  
1/s  
Cs  
Rs + sLs +  
where s = j2f, f = frequency  
Series and Parallel Resonance  
At frequencies above the SRF, the capacitor begins to act  
like an inductor.  
Ideally, the impedance magnitude of a series mounted  
capacitor will vary monotonically from infinite at dc to zero at  
infinite frequency. However, the parasitics associated with  
any capacitor result in a nonideal response.  
When used as a DC block, the capacitor will begin to exhib-  
it gradually higher insertion loss above the SRF. In other  
words, the capacitor will cause a high frequency rolloff of its  
transmission amplitude response.  
Figure 9 shows the magnitude, :Z (F):, as a function of  
frequency.  
When used as an RF bypass, as for the source of an FET, the  
inductance will cause the FET to become unstable which can  
cause oscillations or undesirable effects on the gain  
response of the FET amplifier.  
Figure 10 shows Z(f) on the Smith Chart, which includes  
magnitude and phase.  
Eq. 8. In general, an impedance is represented by Z=R + j X.  
The Smith Chart maps the entire impedance half plane for  
R > 0 into the interior of a unit circle. The Smith Chart is a  
mapping of the reflection coefficient, S11, of an impedance.  
S11 = (Z- ZO) / (Z + ZO). ZO is a reference impedance, typ-  
ically 50 ohms, and is in the center of the chart. The central  
horizontal axis is for X = O, with R < 50 to the left of center,  
and R > 50 to the right of center.  
Beyond the SRF, there is a frequency called the parallel  
resonant frequency (PRF). This occurs when the reactance of  
the series inductor equals that of the parallel capacitor.  
9
1±3  
Introduction to  
Microwave Capacitors  
Electrical Model  
At this parallel resonant frequency, the capacitor will appear  
as a large resister whose value is RPRF defined as:  
Equivalent Series Resistance  
The equivalent series resistance is the RS in the electrical  
model. At the SRF, the ESR can be readily determined on the  
Smith Chart display of the capacitors impedance. However,  
the ESR is not necessarily constant with frequency and its  
value is typically determined by an insertion loss measure-  
ment of the capacitor at the desired frequency.  
Eq. 9. RPRF = Rs x Q  
P
X QP; where,  
QP = 1/R  
S
WP/CP  
WP = 2fPRF  
The parasitic parallel capacitance is usually very small which  
results in a parallel resonant frequency that is much higher  
than the series resonance.  
The insertion loss is a combination of reflective and absorp-  
tive components. The absorptive component is the part  
associated with the value of the ESR (i.e., the loss in RS).  
Because of the low values of ESR in microwave capacitors  
(on the order of 0.01 ohm), the insertion loss measurement  
is very difficult to make, but can be made with a test fixture  
similar to that shown in Figure 11, but with the input and out-  
put 50 ohm impedances transformed down to some more  
convenient impedance level, Rref, to obtain a more accurate  
measurement.  
For capacitor usage in RF impedance matching and tuning  
applications, the maximum practical frequency for use is up  
to 0.5 times the SRF.  
For DC filtering and RF shorting applications, best perfor-  
mance is obtained near the SRF.  
At frequencies above the SRF, but below the PRF, the SLC  
can be used as a low loss inductor with a built-in DC block  
for bypassing and decoupling.  
The series resonant frequency (SRF) of an SLC can be  
measured by mounting the capacitor in series on a 50 ohm  
transmission line as shown in Figure 11.  
When used as a DC block in the transmission line test fixture,  
the forward transmission coefficient, S21, and the input  
reflection coefficient, S11, can be measured to determine:  
CHIP CAPACITOR  
Eq. 10. Dissipative Loss.  
DL=(1-:S11:^2)/(:S21:^2)  
Eq. 11. Reflection Loss.  
RL=(1-:S11:^2) where S11 and S21 are expressed  
as complex phasors.  
From the dissipative loss, DL, the ESR can be determined  
as:  
5± ohm  
LINE  
5± ohm  
LINE  
Eq. 12. ESR = Rref * [1 - SQRT(DL)]/[1 + SQRT(DL)]  
The ESR typically increases with operating temperature and  
self-heating under high power. This increase can be seen  
directly in the lab by measuring the insertion loss of the  
capacitor as a function of temperature.  
A low ESR is especially necessary in SLCs when used in  
series with transistors in low noise amplifiers, high gain  
amplifiers, or high power amplifiers. For example, an ESR of  
1 ohm in series with a base input impedance of 1 ohm would  
result in a serious compromise in ampIifier gain and noise  
figure by up to 3 dB.  
Figure 11  
At its series resonant frequency (SRF), the SLC will appear as  
a small resistance. This measurement can be performed with  
a vector network analyzer such as the Hewlett Packard  
8510. The SRF is at the frequency for which the phase of the  
input reflection coefficient, S11, is crossing the real axis on  
the Smith Chart at 180 degrees.  
Power Rating  
The RF power rating of chip capacitors is dependent on:  
The resonant frequency will be lowered by the inductance  
associated with the bonding attachment to the capacitor  
(i.e., bonding wires, ribbons, leads, etc.). The actual resonant  
frequency of the capacitor by itself can be determined by  
taking out the effects of the bonding attachment inductance.  
Using the low frequency measurements of the primary  
capacitance alone, the inductance of the capacitor can be  
derived from the resonant frequency. With AVX SLCs, the  
inductance is low enough so that the practical operating fre-  
quencies achieved can be beyond 20 GHz.  
• Thermal Breakdown  
• Voltage Breakdown  
Thermal Breakdown  
Thermal breakdown is self-heating caused by RF power dis-  
sipated in the capacitor.  
If the resultant heat generated is greater than what can be  
conducted away through the leads or other means of heat  
sinking, the capacitor temperature will rise.  
9
1±4  
Introduction to  
Microwave Capacitors  
Electrical Model  
As the capacitor temperature increases, the dissipation fac-  
tor and ESR of the capacitor also increase which creates a  
thermal runaway situation.  
Dielectric Constant Measurement at  
Microwave Frequencies  
The measurement of dielectric constants at low frequencies  
is easily done by measuring the capacitance of a substrate  
of known dimensions and calculating the dielectric constant.  
The small signal insertion loss is used to determine the per-  
centage of power which is dissipated in the capacitor.  
For instance, if the insertion loss is:  
The resonance method is used in measuring dielectric  
constants at microwave frequencies of metallized ceramic  
substrates. This is based on the model of the high dielectric  
constant substrate as a parallel plate dielectrically loaded  
waveguide resonator. By observing the resonant frequencies  
and knowing the dimensions of the substrate, the dielectric  
constant is calculated by fitting the resonances into a table  
of expected fundamental and higher order modes. This  
method can be measured by connecting the corners of the  
substrates to the center conductors of either an APC-7 or  
Type N connector. The test setup is the same as for insertion  
loss measurements. This method as described in the litera-  
ture for an alumina substrate with a dielectric constant of  
approximately 10 and a substrate height of 0.025 inches can  
be measured to an accuracy of 2ꢀ. The Napoli-Hughes  
Method uses an open circuit assumption for the unmetallized  
edges which can be radiative. This inaccuracy is reduced if  
thinner substrates or if higher dielectric constant substrates  
are used which will tend to reduce radiation. Higher accuracy  
can be achieved by metallizing all six sides of the substrate  
except for the corners where the RF is coupled to the sub-  
strate. This method as reported by Howell provided more  
consistent results.  
0.01 dB then .2ꢀ of the incident power is lost as heat  
0.10 dB then 2ꢀ of the incident power is lost as heat  
1.00 dB then 20ꢀ of the incident power is lost as heat  
The capacitor will heat up according to the amount of power  
dissipated in the capacitor and the heat sinking provided.  
Even very low ESR, 0.01 ohm at 1 GHz, can be significant  
when passing power through a series mounted capacitor  
into a typically low impedance bipolar transistor base input  
with an input impedance of only 1 ohm. If 1ꢀ of 10 watts is  
dissipated in the capacitor, this 100 milliwatt of power causes  
a very large increase in the capacitor temperature dependent  
on its heat sinking in the MIC circuit.  
Voltage Breakdown  
The voltage breakdown also limits the maximum power  
handling capability of the capacitor.  
The voltage breakdown properties of the capacitors is  
dependent on the following:  
• dielectric material  
• voids in the material  
• form factor  
• separation of the electrodes  
Most microwave capacitors have a DC voltage rating of 50  
VDC. This is much greater than typical DC voltages of 3 to  
15 volts present on an MIC circuit.  
m = 2  
2L  
W
___  
f±  
2f±  
f±  
m = 1  
L
W
___  
f±  
FROM  
AUTO  
TESTER  
SCALAR  
ANALYZER  
SWEEP  
DETECTOR  
GENERATOR  
4
n = 1  
2
3
Figure 13  
Test Configuration for Resonance Measurements  
Figure 12  
9
Dispersion Curve of a Rectangular Resonator  
1±5  
Introduction to  
Microwave Capacitors  
Transmission Lines  
Propagation Constant and  
Characteristic Impedance  
Standing Waves  
Standing waves on the lossless transmission line:  
The incident waves of voltage and current decrease in mag-  
nitude and vary in phase as one goes toward the receiving  
end of the transmission line which has losses. The propaga-  
tion constant is a measure of the phase shift and attenuation  
along the line.  
An incident wave will not be reflected if the transmission line  
is terminated in either matched load or if the transmission line  
is infinitely long. Otherwise, reflected waves will be present.  
In other words, any impedance will cause reflections.  
Let us consider the case of a lossless transmission line ter-  
minated in a short line. In this case all of the incident wave  
will be reflected. See Figure 15.  
• attenuation per unit length of line is called the attenuation  
constant. (dB or nepers per unit length)  
• phase constant, phase shift per unit length. (radians per  
unit length)  
The dotted sine wave to the right of the short circuit in the  
diagram indicates the position and distance the wave would  
have traveled in the absence of the short circuit. With the  
short circuit placed at X, the wave travels the same distance  
back toward the generator. In order to satisfy the boundary  
conditions, the voltage at the short circuit must be zero at all  
times. This is accomplished by a reflected wave which is  
equal in magnitude and reversed in polarity (shown by the  
superimposed reflected wave and the resultant total voltage  
on the line). Note that the total voltage is twice the amplitude  
of the incident voltage at a quarter wavelength back toward  
the generator and the total voltage is zero at one-half wave-  
length from the short.  
• angular frequency, 2 * pi * f  
(R+jwL) - complex series impedance per unit length of line.  
(G+jwC) - complex shunt admittance per unit length of line.  
L
Eq. 13. Z± for lossless case: Z± =  
⁄  
C
WAVE  
CIRCUIT  
X
D
E
1
2E  
1
1
1
3
2
E
i
3
1
2
±
DISTRIBUTED PARAMETER MODEL  
OF A SECTION OF TRANSMISSION LINES:  
RESULTANT  
(aꢀ  
SHORT  
E
1
rx  
lx  
3
5
6
2
gx  
cx  
4
2
1
1
4
3
1
E
r
(bꢀ  
RESULTANT  
SHORT  
x  
where  
G = Conductance per unit length  
R = Resistance per unit length  
C = Capacitance per unit length  
L = Inductance per unit length  
3
2
4
1
2
2
4
1
3
2E  
i
= Incremental length  
X  
(cꢀ  
SHORT  
1
7
7
Figure 15  
6
5
2
3
6
5
2
3
4
5
6
PURE TRAVELING WAVE  
4
3
2
4
5
6
4
3
2
V
I
+
AMPLITUDE  
-
1
7
1
7
(dꢀ  
(eꢀ  
X
Figure 14  
DISTANCE ALONG LINE  
This figure shows generation of standing waves on a short-  
ed transmission line. Dotted lines to the right of the short cir-  
cuit represent the distance the wave would have traveled in  
absence of the short. Dotted vectors represent the reflected  
wave. The heavy solid line represents the vector sum of the  
incident and refected waves. (d) and (e) represent instanta-  
neous voltages and currents at different intervals of time.  
V = Instantaneous voltage  
I = Instantaneous current  
9
Pure traveling waves: V & I in the lossless case are in phase.  
V & I also reverse polarity every half wavelength.  
Figure 16  
1±6  
Introduction to  
Microwave Capacitors  
Transmission Lines  
FIELD ORIENTATION OF A COAXIAL LINE  
Open Circuit:  
At a distance of one-quarter wavelength from the short, the  
voltage is found to be twice the amplitude of the incident  
voltage, which is equivalent to an open circuit. Therefore, this  
same distribution would be obtained if an open circuit were  
placed a quarter wavelength from the short. In the case the  
first node is located a quarter wavelength from the open and  
the first antinode is right as the open. The node-to-node  
spacing remains half wavelength as is the antinode-to-antinode  
spacing.  
E
H
I
V
DIRECTION OF PROPAGATION  
Figure 17  
Voltage Standing Wave Ratio:  
The voltage standing wave ratio is defined as the ratio of the  
maximum voltage to the minimum voltage on a transmission  
line. This ratio is most frequently referred to as VSWR (Viswar).  
MICROSTRIP  
TWO  
COAXIAL  
WIRE  
RECTANGULAR  
WAVEGUIDE  
RIDGED  
WAVEGUIDE  
CIRCULAR  
WAVEGUIDE  
Emax  
Emin  
Ei + Er 1 + Rho  
Eq. 14. VSWR =  
=
=
Ei - Er  
1 - Rho  
CROSS SECTIONAL CONFIGURATIONS OF  
VARIOUS TYPES OF GUIDING STRUCTURES  
where Rho = reflective coefficient  
If the transmission line is terminated in a short or open circuit,  
the reflected voltage, Er, is equal to the incident voltage, Ei.  
From the above equation the reflection coefficient is 1.0, and  
the VSWR is infinite. If a matched termination is connected to  
the line, the reflected wave is zero, the reflection coefficient is  
zero, and the VSWR is zero.  
Figure 18  
The total voltage pattern is called a standing wave. Standing  
waves exist as the result of two waves of the same frequency  
traveling in opposite directions on a transmission line.  
The total voltage at any instant has a sine wave distribution  
along the line with zero voltage at the short and zero points at  
half wave intervals from the short circuit. The points of zero  
voltages are called voltage nodes and the points of maximum  
voltage halfway between these nodes are called antinodes.  
9
1±7  
Introduction to  
Microwave Capacitors  
Incorporation of Capacitors into Microwave Integrated Circuit Hybrids  
• Dielectric Constant: Increase of the dielectric constant of  
the substrate will decrease the ZO of the microstrip line.  
Microwave Integrated Circuit Hybrids  
A Microwave Integrated Circuit Hybrid (MIC) is a microwave  
Table II shows a brief listing of substrate properties.  
circuit that uses integrated circuit production techniques  
involving such factors as thin or thick films, substrates,  
dielectrics, conductors, resistors, and microstrip lines, to  
build passive assemblies on a dielectric. Active elements  
such as microwave diodes and transistors are usually added  
after photo resist, masking, etching, and deposition process-  
es have been completed. MICs usually are enclosed as  
shielded microstrip to prevent electromagnetic interference  
with other components or systems. This section will discuss  
some of the important characteristics of MICs, such as:  
Table II  
Material  
Alumina  
Sapphire Quartz Beryllium  
Oxide  
Relative  
Dielectric  
Constant, E  
9.8*  
11.7  
0.0001  
0.4  
3.8  
0.0001  
0.01  
6.6  
0.0001  
2.5  
r
Loss  
Tangent at  
10 GHz  
0.0001  
0.3  
• MIC substrates  
• MIC metallization  
• MIC components  
Thermal  
Conductivity  
K, in W/CM/  
Deg. C  
MIC Substrates:  
Microstrip employs circuitry that is large compared to the  
wavelength of the frequency used with the circuit. For this  
reason, the etched metal patterns often are distributed cir-  
cuits with transmission lines etched directly onto the MIC  
substrate. Figure 19 shows the pertinent dimensional para-  
meters for a microstrip transmission line.  
*Alumina E depends on vendor and purity.  
r
The dependence of ZO to the above parameters is as shown:  
Eq. 15. ZO(f) = 377 * H/(W)/Sqrt (Er)  
where,  
H = height of the substrate  
For the current discussion we are most interested in the high-  
er microwave frequencies. The MIC circuit design requires a  
uniform and predictable substrate characteristic. Several  
types of substrates in common usage are: alumina, sapphire,  
quartz, and beryllium oxide. Key requirements for a MIC sub-  
strate are that it have:  
W = width of the microstrip  
conductor  
Er = dielectric constant of the  
substrate  
A graph of ZO versus W/H for several values of dielectric  
constants is shown below:  
• Low dielectric loss  
1±±±  
• Uniform dielectric constant  
• Smooth finish  
• Low expansion coefficient  
5±±  
4±±  
3±±  
2±±  
2.3  
2.55  
1±±  
4.8  
6.8  
5±  
1±  
4±  
STRIP  
CONDUCTOR  
3±  
2±  
W
1±  
5
4
DIELECTRIC  
h
3
2
1
GROUND PLANE  
.1  
.4 .5  
1
2
3
4
5
7.5 1±  
2± 3±  
4± 5±  
1±±  
.2 .3  
Figure 19. MIC Microstrip Outline  
MICROSTRIP W/H  
The characteristic impedance of the microstrip line is depen-  
dent primarily on the following:  
Figure 20  
The most popular substrate material is alumina which has a  
dielectric constant of between 9.6 and 10.0 depending on  
the vendor and the purity. Other substrates are used where  
the specified unique properties of the material (beryllia for  
high power, ferrites for magnetic properties) are demanded  
by design.  
• Width of the conductor: Increase in the width “W” of the  
conductor will decrease the ZO of the microstrip line.  
• Height of the substrate: Increase in the height “H” of the  
substrate will increase the ZO of the microstrip line.  
9
1±8  
Introduction to  
Microwave Capacitors  
Incorporation of Capacitors into Microwave Integrated Circuit Hybrids  
MIC Metallization:  
Capacitors:  
MIC metallization is a thin film of two or more layers of met-  
als. A base metallization layer is deposited onto the sub-  
strate, another layer may be optionally deposited on top of  
this, and then a final gold layer is deposited onto the surface.  
The base metallization is chosen for its adhesion to the sub-  
strate and for compatibility with the next layer.  
A lumped capacitor can be realized by the parallel gap  
capacitance of an area of metallization on the top of the sub-  
strate to the ground plane. Values of capacitance that can be  
obtained by this method are usually less than a few pico-  
farads. At microwave frequencies if the capacitor size in any  
one dimension begins to approach a quarter-wavelength, a  
resonance will occur.  
The base metallization is usually lossy at microwave fre-  
quencies. The losses due to this metallization can be kept to  
a minimum if its thickness does not exceed one “skin depth”  
of the metal.  
Large values of capacitance can be achieved with a dielec-  
tric constant between the capacitor plates while maintaining  
the small size required for MIC circuits.  
Skin effect defines a phenomenon at microwave frequencies  
where the current travelling along a conductor does not pen-  
etrate the conductor but remains on the surface of the con-  
ductor. The “skin depth” indicates how far the microwave  
current will penetrate into the metal. The “skin depth” is  
smaller as the frequency increases.  
Chip capacitors can be fabricated on substrate with a dielec-  
tric constant up to 5000. This higher dielectric constant  
allows a much smaller size capacitor for a given capacitance  
value which is a very desirable feature both from the real  
estate aspect and the self-resonance aspect.  
Resistors:  
By keeping the lossy metallization as thin as possible, more  
of the microwave current will propagate in the top metalliza-  
tion gold layer and loss is minimized.  
MIC resistors are often realized by using a resistive base layer  
on the MIC substrate metallization, and by etching the prop-  
er pattern to expose the resistive layer in the MIC circuitry.  
Typical metallization schemes used in the industry are:  
The exact value of the resistor is determined by:  
• Chromium-Gold:  
• Nichrome-Gold:  
Cr-Au  
NiCr-Au  
• resistivity of the resistive base layer, and  
• length and width of the resistor.  
• Chromium-Copper-Gold: Cr-Cu-Au  
Thin film resistive base layers are usually the following:  
• Titanium-Tungsten-Gold:  
• Others  
TiW-Au  
• tantalum nitrite, or  
• nickel-chrome (nichrome).  
MIC Components:  
When chip resistors are used, they are mounted and con-  
nected in the same way as the chip capacitors.  
Microstrip has advantages over other microwave circuit  
topologies in that active semiconductors and passive com-  
ponents can easily be incorporated to make active hybrid  
circuits. It is possible to mix high and low frequency circuitry  
to attain a “system-on-a substrate.”  
Inductors:  
Inductors are often realized by using narrow etched  
microstrip lines which provides inductance on the order of  
1 to 5 nanohenrys.  
Passive Components:  
Higher values up to 50 nanohenrys are obtained by etching  
a round or square spiral onto the MIC metallization.  
On MIC circuits, the passive components are either distrib-  
uted or lumped elements. The distributed components are  
usually realized by etched patterns on the substrate metal-  
lization. The lumped components are capacitors, resistors,  
and inductors; and whenever possible components are  
derived by etching them directly on the MlC metallization thin  
film. Chip components are used when they offer advantages  
such as:  
Even higher values can be obtained by using wound wire  
inductors or chip inductors which are wire coils encased in a  
ceramic.  
Both types of discrete inductors are attached to the circuit  
by the same means as the capacitors.  
• Component values are beyond that realizable by thin film  
techniques on the MIC substrates,  
• Smaller size is required,  
• High power capability is required.  
Capacitors, resistors, and inductors are discussed in the  
following:  
9
1±9  
Introduction to  
Microwave Capacitors  
Incorporation of Capacitors into Microwave Integrated Circuit Hybrids  
temperature. Other combinations have transition states with  
wider temperature ranges. For instance, the eutectic tem-  
perature for the following alloys are:  
Active components:  
The active devices in the MIC circuit can be made of entirely  
different materials than the substrates and are usually  
attached to the substrates by eutectic soldering or conduc-  
tive epoxy.  
Table III  
Eutectic  
Eutectic  
Typical active devices on MIC circuits are the following:  
Alloy  
Composition  
Temperature  
• GaAs FETs  
Gold Germanium  
Gold Tin  
88ꢀ Au 12ꢀ Ge  
80ꢀ Au 20ꢀ Sn  
356°C  
280°C  
• Bipolar Transistors  
• Schottky Barrier Diodes  
• PIN Diodes  
• Various other Semiconductors  
For best results, the eutectic attach is performed under an  
inert gas atmosphere, typically nitrogen, to reduce oxidation  
at high temperatures. The eutectic must be selected so that  
the die attach operations will not interfere with prior solder-  
ing operations and itself will not be disturbed by subsequent  
process steps. The metallization should be able to undergo  
400°C without any blistering or other adhesion degradation.  
The active devices can be either in:  
• a plastic or ceramic package with metal leads, or  
• chip form.  
The packaged devices are commonly used at a lower  
frequency range than the chip devices since they exhibit  
more parasitic circuit elements that limit their performance at  
higher frequency.  
2. Epoxy Die Attach  
The epoxy die attach method uses silver or gold conductive  
particles in an epoxy. The epoxy for chip attach on MIC  
circuits is a one-part type which cures at temperatures of from  
125°C to 200°C. The curing time is a function of temperature.  
A cure time of 30 minutes at 150°C is a good compromise for  
high reliability and a reasonable cure time.  
The advantages of packaged devices are protection of the  
devices during transport and mounting, ease of characteri-  
zation, and ease of mounting onto the MIC circuit.  
Chip Component Attach:  
The methods of attachment of the chip components to the  
substrate are usually by:  
Chip Components Interconnection:  
The chip components are interconnected to the MIC circuit  
by means of:  
• eutectic solder die attach, and  
• epoxy die attach.  
1. Eutectic Die Attach  
• wire bonding, and  
The eutectic die attach method can be used with several  
alloys. Eutectic defines the exact alloy combination at which  
the solidus to liquidus transition takes place at one particular  
• miniature parallel gap welding.  
9
11±  
Other Products  
PASSIVES  
CONNECTORS  
2mm Hard-Metric for CompactPCI®  
Automotive Connectors  
Capacitors  
Multilayer Ceramic  
Tantalum  
Filters  
EMI  
SAW  
Dielectric  
Board to Board Connectors –  
SMT and Through-Hole  
Card Edge  
Compression  
Custom Designed Connectors  
Customized Backpanel, Racking and  
Harnessing Services  
DIN 41612 Connectors  
FFC/FPC Connectors  
Insulation Displacement Connectors  
I/O Connectors  
Memory Card Connectors  
CF, PCMCIA, SD, MMC  
MOBOTM, I/O, Board to Board and  
Battery Connectors  
Press-fit Connectors  
Varicon®  
Wire to Board, Crimp or IDC  
Microwave  
Glass  
Film  
Power Film  
Power Ceramic  
Ceramic Disc  
Trimmer  
Thin Film  
Inductors  
Fuses  
Capacitors  
Couplers  
Baluns  
BestCap™  
Filters  
Resistors  
Integrated Passive  
Components  
Arrays  
Timing Devices  
Resonators  
Oscillators  
Low Inductance Chip Arrays  
Capacitor Arrays  
Dual Resonance Chips  
Custom IPCs  
Crystals  
Voltage Suppressors,  
Varistors and Thermistors  
Acoustical Piezos  
For more information please visit  
our website at  
http://www.avx.com  
NOTICE: Specifications are subject to change without notice. Contact your nearest AVX Sales Office for the latest specifications. All statements, information and data given  
herein are believed to be accurate and reliable, but are presented without guarantee, warranty, or responsibility of any kind, expressed or implied. Statements  
or suggestions concerning possible use of our products are made without representation or warranty that any such use is free of patent infringement and are not  
recommendations to infringe any patent. The user should not assume that all safety measures are indicated or that other measures may not be required. Specifications are  
typical and may not apply to all applications.  
© AVX Corporation  
111  
USA  
AVX Myrtle Beach, SC  
Corporate Offices  
AVX North Central, IN  
AVX Southwest, AZ  
Tel: 602-678-0384  
FAX: 602-678-0385  
AVX Southeast, GA  
Tel: 404-608-8151  
FAX: 770-972-0766  
Tel: 317-848-7153  
FAX: 317-844-9314  
Tel: 843-448-9411  
FAX: 843-448-1943  
AVX Mid/Pacific, CA  
Tel: 510-661-4100  
FAX: 510-661-4101  
AVX South Central, TX  
AVX Canada  
Tel: 905-238-3151  
FAX: 905-238-0319  
AVX Northwest, WA  
Tel: 360-699-8746  
FAX: 360-699-8751  
Tel: 972-669-1223  
FAX: 972-669-2090  
EUROPE  
AVX Limited, England  
AVX S.A., France  
Tel: ++33 (1) 69-18-46-00  
FAX: ++33 (1) 69-28-73-87  
AVX srl, Italy  
Tel: ++390 (0)2 614-571  
FAX: ++390 (0)2 614-2576  
European Headquarters  
Tel: ++44 (0) 1252-770000  
FAX: ++44 (0) 1252-770001  
AVX GmbH, Germany  
Tel: ++49 (0) 8131-9004-0  
FAX: ++49 (0) 8131-9004-44  
AVX Czech Republic  
Tel: ++420 465-358-111  
FAX: ++420 465-323-010  
AVX/ELCO, England  
Tel: ++44 (0) 1638-675000  
FAX: ++44 (0) 1638-675002  
ASIA-PACIFIC  
AVX/Kyocera, Singapore  
Asia-Pacific Headquarters  
AVX/Kyocera, Taiwan  
Tel: (886) 2-2698-8778  
FAX: (886) 2-2698-8777  
Kyocera, Japan - KDP  
Tel: (81) 75-604-3424  
FAX: (81) 75-604-3425  
Tel: (65) 6286-7555  
FAX: (65) 6488-9880  
AVX/Kyocera, Shanghai, China  
AVX/Kyocera, Malaysia  
AVX/Kyocera, Hong Kong  
Tel: 86-21 6886 1000  
FAX: 86-21 6886 1010  
Tel: (60) 4-228-1190  
FAX: (60) 4-228-1196  
Tel: (852) 2-363-3303  
FAX: (852) 2-765-8185  
AVX/Kyocera, Tianjin, China  
Elco, Japan  
Tel: 86-22 2576 0098  
FAX: 86-22 2576 0096  
Tel: 045-943-2906/7  
FAX: 045-943-2910  
AVX/Kyocera, Korea  
Tel: (82) 2-785-6504  
FAX: (82) 2-784-5411  
Kyocera, Japan - AVX  
Tel: (81) 75-604-3426  
FAX: (81) 75-604-3425  
Contact:  
A KYOCERA GROUP COMPANY  
http://www.avx.com  
S-RFMTF00M904-C  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY